domingo, 21 de marzo de 2010

Teoría de bandas

Formación de la banda mediante el solapamiento orbital.

El solapamiento de un gran número de orbitales atómicos conduce a un conjunto de orbitales moleculares que se encuentran muy próximos en energías y que forman virtualmente lo que se conoce como una banda. Las bandas se encuentran separadas entre sí mediante espacios energéticos a los que no les corresponde ningún orbital molecular (Figura 2).
estructura electrónica de un sólido
Figura 2. La estructura electrónica de un sólido se caracteriza por la existencia de bandas de orbitales.
Para poder visualizar la formación de una banda considérese una distribución lineal de átomos (sólido unidimensional), separados todos a la misma distancia (a), en los que cada átomo posee un orbital de tipo s. Cada orbital de tipo s de un átomo solapará con el orbital s del átomo vecino. Así, si sólo hubiera dos átomos en el conjunto el solapamiento conduciría a la formación de 2 orbitales moleculares, uno de enlace y otro de antienlace. Si tenemos 3 átomos, el solapamiento de los 3 orbitales de tipo s originaría la formación de 3 orbitales moleculares, de enlace, de no enlace y de antienlace. A medida que se van añadiendo átomos al conjunto cada uno contribuye con su orbital molecular al solapamiento y en consecuencia se obtiene un nuevo orbital molecular. Así, cuando el conjunto está formado por N átomos se obtienen N orbitales moleculares. El orbital molecular de menor energía no presenta ningún nodo entre los átomos vecinos, mientras que el orbital molecular de mayor energía presenta un nodo entre cada par de átomos vecinos.
solapamiento
Los restantes orbitales van teniendo sucesivamente 1, 2, 3... nodos internucleares y sus energías están comprendidas entre la del orbital más enlazante (de menor energía) y la del más antienlazante (mayor energía). La diferencia de energía entre los N orbitales moleculares es tan pequeña que se forma una banda o continuo de niveles de energía. La anchura total de la banda depende de la fuerza de la interacción entre los orbitales atómicos de los átomos vecinos, de forma que, cuanto mayor sea la interacción, mayor será el solapamiento entre los orbitales y mayor será la anchura de la banda resultante (o separación entre el orbital molecular más enlazante y el más antienlazante). La anchura de una banda es, por lo general, una medida del grado de localización del enlace. Una banda estrecha representa un alto grado de localización de un enlace y a medida que se va haciendo más ancha los enlaces se hacen más deslocalizados.
Formación de una banda de orbitales moleculares
Figura 3. Formación de una banda de orbitales moleculares.
La banda que se ha descrito se ha formado a partir del solapamiento de orbitales s y se denomina, por tanto, banda s (Figura 4). Si en los átomos existen orbitales de tipo p disponibles, éstos pueden solapar originando una banda p (Figura 5). Como los orbitales p poseen mayor energía que los orbitales s de la misma capa, se observa a menudo la separación entre la banda s y la banda p. Pero si las bandas son anchas y las energías de los orbitales s y p de la misma capa no difieren mucho entonces ambas bandas se solapan (Figura 6). Este solapamiento es el responsable de que los elementos del grupo 2 de la Tabla Periódica tengan un comportamiento metálico. De la misma forma, la banda d está formada por el solapamiento de orbitales atómicos d.
Orbitales moleculares y banda s
Figura 4. Orbitales moleculares y banda s.
Orbitales moleculares y banda p
Figura 5. Orbitales moleculares y banda p.
Bandas s y p
Figura 6. (a) y (b) Bandas s y p, que pueden solapar o no, dependiendo de la anchura. (c) Niveles ocupados y nivel de Fermi a o K.

El nivel de Fermi

A la temperatura T = 0 K los electrones ocupan los orbitales moleculares que forman la banda siguiendo el principio de construcción citado en la lección 2. Si cada átomo del modelo (distribución lineal de átomos) contribuye a la banda s con 1 electrón entonces, a T = 0 K la mitad de los orbitales que forman la banda (1/2 N) estarán ocupados. El orbital molecular de mayor energía que se encuentra ocupado se conoce como el nivel de Fermi y, en este caso, estará situado en el centro de la banda. La banda de menor energía que se encuentra ocupada o semiocupada se conoce como banda de valencia. La banda de menor energía que se encuentra vacía se conoce como la banda de conducción.
A una temperatura superior a 0 K, la población de los orbitales moleculares que forman la banda, P, viene dada por la distribución de Fermi-Dirac, que es una versión de la distribución de Boltzmann, y que tiene en cuenta que cada nivel de energía de la banda sólo puede estar ocupado por 2 electrones como máximo. Esta distribución P tiene la siguiente forma:
P = 1/(e(E-μ)/kT + 1)
donde μ es el potencial químico o energía del nivel para el cual P = 1/2. La forma de la distribución de Fermi-Dirac se muestra en la Figura 7. Cuando la banda no está completamente ocupada los electrones que se encuentran próximos al nivel de Fermi pueden, fácilmente, promocionarse a niveles vacíos que se encuentran inmediatamente por encima de éste. Como resultado, los electrones gozan de movilidad y pueden moverse libremente a través del sólido. Este fenómeno origina que la sustancia sea un buen conductor eléctrico. Como se ha visto, en un metal la conductividad eléctrica disminuye con la temperatura; este hecho se debe a las interferencias (los electrones se pueden describir como ondas) que se producen entre los electrones que se mueven por el sólido y las vibraciones de la red cristalinas, provocadas por el movimiento de los átomos, vibraciones que aumentan al hacerlo la temperatura.

La densidad de estados.

El número de niveles de energía con un determinado valor de energía se conoce como la densidad de estados, N(E) o ρ. Es posible representar la variación de energía de una banda en función de la densidad de estados, tal como aparece en la Figura 8 para las bandas s y p. La densidad de estados no es uniforme a lo largo de toda la banda debido a que los niveles de energía se empaquetan más a unos determinados valores de energía que a otros. Este hecho produce que la banda s, por ejemplo, presente la mayor densidad de estados en el centro y la menor densidad de estados en los extremos de la banda. La razón de este comportamiento está en la forma de las combinaciones lineales que originan los orbitales moleculares que constituyen la banda s. Existe una única combinación lineal que conduce al orbital molecular más enlazante (el límite inferior de la banda)y otra que conduce al más antienlazante (el límite energético superior de la banda). Sin embargo hay varias combinaciones posibles, degeneradas en energía, que dan lugar a los orbitales moleculares que forman la parte central de la banda s.
Densidad de estados típica de un metal y semimetal
Figura 8. Densidad de estados típica de un metal (izquierda) y de un semimetal (derecha).
Entre dos bandas separadas por un espaciamiento energético, la densidad de estados en el mismo es cero, pues no hay niveles energéticos en dicha separación. En algunos casos especiales puede ocurrir que la separación entre la banda de valencia y la de conducción sea nula, aunque la densidad de estados en el punto de conjunción de ambas bandas sea cero. Esta es la estructura de bandas típica de un semimetal. Sólo algunos electrones pueden pasar de la banda llena a la banda vacía de forma que estos materiales poseen conductividades eléctricas bajas. Un ejemplo importante de semimetal es el grafito.


Nombre: Luiggi D. Escalante Sarmiento
CI. 18.878.611
Materia: EES

Fuente: http://www.textoscientificos.com/quimica/inorganica/enlace-metales/teoria-bandas



LA LUZ, SU PROPAGACION, DISTRIBUCION Y APLICACIONES

LA LUZ, SU PROPAGACION, DISTRIBUCION Y APLICACIONES


Los físicos de hoy interpretan la luz acudiendo a modelos corpusculares u ondulatorios. Determinadas experiencias con la luz son interpretadas de modo satisfactorio recurriendo a propiedades características de las ondas como la frecuencia, longitud de onda, intensidad, fase, polarización. Otras experiencias solo llegan a ser interpretadas de manera satisfactoria recurriendo a un modelo corpuscular en el cual la luz consta de un flujo de fotones, cada uno de ellos llevando una cierta energía y cantidad de movimiento. El modelo corpúscular se asentó con la obra de Newton a inicios del siglo XVIII. La medición de la velocidad de la luz realizada por Foucault fue un duro golpe para este modelo, a partir del cual se predecía que la luz al propagarse por un material lo haría con una velocidad mayor que la que posee en el vacío. Ya para las primeras décadas del siglo XIX el modelo ondulatorio había tomado fuerza siendo uno de sus principales exponentes el físico francés Augusto Fresnel. Los fundamentos de su formalismo, a pesar de haber sido derivado dentro del contexto erróneo de un supuesto medio etéreo en el cual se propagaba la luz, es la base del análisis de las propiedades ópticas de recubrimientos hoy en día. Este modelo ondulatorio llegó a su punto culminante con el tratado de electricidad y magnetismo por James Clerk Maxwell en 1864. Se podría haber pensado entonces que el modelo corpúscular de la luz había pasado a la historia. Pero no fue así. Hechos experimentales como el efecto fotoeléctrico, por cuya explicación recibió Einstein el premio Nobel en 1905, así como el surgimiento de la física cuántica en las primeras décadas del siglo XX dio paso a la llamada dualidad onda-partícula, ya no solo para la luz sino para todo objeto material. Así es como concebimos la luz hoy en día, dentro de esta dualidad: ciertos fenómenos ópticos pueden ser satisfactoriamente interpretados a la luz de conceptos propios de los fenómenos ondulatorios, otros requieren de una perspectiva en la cual la luz es concebida como un flujo de fotones.

Los fenómenos de reflexión, refracción, propagación en línea recta, y los evidentes colores de los objetos fueron fenómenos que llamaron la atención de griegos como Platón y Aristóteles. No fue posible para ellos llegar a una comprensión cualitativa adecuada acerca de la formación de las imágenes en nuestras retinas debido a la acción de los rayos de luz que ingresan a nuestros ojos. Una más adecuada comprensión del fenómeno de la visión se daría a partir del trabajo de Johannes Kepler en los inicios del renacimiento de la física, allá por el siglo XV.

Nuestro entorno está rodeado de fenómenos ópticos, algunos tan llamativos como la casa de los espejos, otros tan prácticos como el uso de vidrios corrugados que no permiten que los rayos de luz que los atraviesan se propaguen en forma paralela unos respecto a otros, tornándose así borrosa la imagen de los objetos. Cuando la luz incide sobre una superficie muy lisa se refleja especularmente, los espejos de nuestros hogares son buenos ejemplos de reflexión especular. Cuando la superficie se torna rugosa, la luz se refleja no solamente con una componente especular sino que también surge luz reflejada en forma difusa.

En el modelo ondulatorio de la luz, ésta es concebida como la superposición de campos eléctricos y magnéticos autosostenidos que se propagan en forma rectilínea llevando consigo energía. La intensidad de la onda es proporcional a esa energía transportada. Se le asocia a esa onda una frecuencia y una longitud de onda, siendo la luz visible aquella que corresponde a longitudes de onda entre los 400 y 700 nm. Longitudes de onda menores corresponden a la luz ultravioleta, rayos X y rayos gama. Longitudes de onda mayores corresponden a la luz infrarroja, microondas, ondas de televisión y radio.

Fue Newton quien mostró que la luz blanca es una superposición de ondas con diferentes frecuencias, pudiéndose descomponer ésta de forma artificial mediante un prisma. Sus investigaciones en óptica se recopilaron en su obra óptica aparecida en 1704, unos años después de su para entonces famosa obra Los Principia. La naturaleza nos deleita con esa descomposición espectral de la luz blanca al producir un arcoiris. La luz solar es refractada en las gotas de lluvia. Hoy en día asociamos a cada color un índice de refracción, y explicamos el diferente grado de refracción de la luz a través del prisma o de las gotas de agua diciendo que hay una dispersión cromática.

Una de las propiedades de la luz es la interferencia: al hacer incidir sobre una pantalla dos haces de luz habrá regiones de la pantalla en donde las ondas que arriban se suman constructivamente creando una intensidad mayor que la que poseen las ondas incidentes, habrán regiones de la pantalla en las cuales las ondas se suman destructivamente, pudiéndose hasta cancelar su efecto.

El hombre ha sacado mucho provecho de esta propiedad de interferencia al crear dispositivos que consisten de dos o más capas sucesivas de materiales dieléctricos, esto es, materiales que no absorben la luz, de modo que escogiendo apropiadamente los espesores de estos y sus índices de refracción se refuerza el grado en que el dispositivo como un todo refleja o transmite la luz. Ya la naturaleza conocía de antemano este efecto y tanto algunas aves, como mariposas, abejones, y peces han sacado provecho del llamado fenómeno de iridescencia.

En el caso de algunas mariposas, la composición estructural de sus alas se asemeja a una estructura laminar con sucesivas capas de material orgánico y aire, lo que explica la interferencia constructiva que se da para ciertas longitudes de onda y ángulos de visión. Los banqueros han sabido sacar provecho de este efecto para proteger sus intereses, mientras que otros se han interesado más en creas materiales antireflectantes: recubrimientos que garantizan un mejor aprovechamiento de la energía electromagnética que incide sobre un medio ya de por sí transparente. Un vidrio corriente refleja cerca del 5% de la luz que incide normalmente sobre él, al recubrirlo con un material también transparente, cuyo índice de refracción se escoge de modo que haya interferencia destructiva entre los rayos de luz reflejados, la reflexión resultante puede bajarse hasta cerca de un 1%.

Otro de los efectos ópticos que la humanidad ha sabido sacar provecho es la reflexión total interna. Cuando la luz viaja de un medio ópticamente más denso hacia uno menos denso, existe un ángulo crítico más allá del cual la luz es por completo reflejada hacia el mismo medio de propagación inicial, no hay luz transmitida hacia el medio menos denso. Las fibras ópticas utilizadas hoy en día en telecomunicaciones y en medicina (para cirugías láser y endoscopías) son reflejos del buen aprovechamiento de este fenómeno de reflexión total interna.

Otra de las propiedades de la luz es su polarización, la cual es determinada por la forma en que el campo eléctrico oscila, pudiendo hacerlo en un plano vertical, uno horizontal, o en forma más complicada. En todo caso, mediante polarizadores podemos suprimir algunas de las componentes de esa polarización reduciendo así la intensidad de la luz. Vidrios polarizados para automóviles y anteojos polarizados para protección de la luz solar son ejemplos del uso de recubrimientos que suprimen parte del grado de polarización de la luz.

Y la óptica no deja de sorprender a los físicos. Nuevas aplicaciones se siguen desarrollando, nuevos materiales que responden de manera intrigante a la luz que se les hace incidir, hasta índices de refracción negativos se reportan en la literatura reciente.

Los cristales electrónicos, aquellos en los cuales los electrones se encuentran con un medio cristalino consistente de núcleos iónicos ordenados, geométricamente dispuestos de forma que su interacción con ellos determina la existencia de bandas de energía que le son prohibidas a estos electrones, han sido la base de la revolución electrónica de la segunda mitad del siglo XX. Y de nuevo mirando a la naturaleza, a sus ópalos, el hombre se ha dado cuenta de que es posible imitar a los cristales electrónicos para obtener cristales fotónicos: arreglos periódicos de diminutas esferas hace que los fotones al propagarse a través de este tipo de material tengan bandas de frecuencia o energía que le son prohibidas.

Allá por 1926, Einstein y Heisenberg tuvieron un encuentro no muy amistoso en la Universidad de Berlín, luego de un seminario dado por Heisenberg en el cual expuso su formulación de la mecánica cuántica. "Dios no juega a los dados" le dijo Einstein a Heisenberg, aludiendo a su no aceptación de la interpretación probabilística subyacente en el formalismo de la nueva física cuántica. La argumentación de Heisenberg a la obstinada posición de Einstein resaltaba el hecho de que aún al hablar de física cuántica recurrimos al lenguaje de la física clásica para poder entendernos, al menos parcialmente. Algo semejante nos sucede hoy en día con la luz, todavía no la terminamos de comprender bien, pero es a través de ella, actuando sobre nuestros ojos, que adquirimos mayor noción de un entorno que sabemos no necesariamente lo podemos interpretar a la luz de la física clásica. Pudiendo mediar dispositivos receptores y amplificadores de señales eléctricas, y tratamiento de imágenes, lo cierto es que es la luz quien al final nos develará una imagen susceptible de analizar.

Es por medio de ella que se ha hecho realidad aquellos que para los griegos del siglo IV antes de Cristo era una utopía: ver los átomos, ver la superficie de un grano de sal a nivel atómico, percatarnos de la ausencia de un átomo que debiera estar ahí. Es a través de la luz que podemos ver la rugosidad de superficies que en primera instancia nos parecerían lisas, es la luz la que nos trae la imagen de diminutas bacterias en la punta de una aguja, la que nos hace ver distantes objetos que forman parte del Universo, aún aquellos ubicados a miles de millones de años luz. No basta conocer solo el origen de esa luz, cuáles son sus fuentes, es necesario tomar en consideración cómo se modifica hasta llegar a nosotros, el polvo galáctico puede desviar nuestra atención.

También la luz se ha visto envuelta en otros escándalos: los recientemente desarrollados métodos de enfriamiento mediante luz láser. Temperaturas de hasta 10-9 K han podido ser obtenidas favoreciéndose así la formación de los llamados condensados de Bose-Einstein.

Mucho se ha avanzado desde la Optica newtoniana, pasando por la creación del transistor y su acelerada miniaturización, pero algunos vislumbran este siglo XXI que recién iniciamos como el siglo de los circuitos fotónicos.

Nombre: Luiggi D. Escalante Sarmiento
CI. 18.878.611
Materia: EES
Fuente: http://www.conicit.go.cr/documentos/documentos/listadocs/la_luz.html







La energía Nuclear

La energía es la capacidad que poseen los cuerpos para producir Trabajo, es decir la cantidad de energía que contienen los cuerpos se mide por el trabajo que son capaces de realizar
La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión Nuclear (división de núcleos atómicos pesados) o bien por Fusión Nuclear (unión de núcleos atómicos muy livianos). En las reacciones nucleares se libera una gran cantidad de energía debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía. Lo anterior se puede explicar basándose en la relación Masa-Energía producto de la genialidad del gran físico Albert Einstein.
Para conocer que es la energía nuclear primero debemos conocer que es, como se transforma, y obtiene la energía, y los diferentes tipos de energía. De igual forma se debe tener un conocimiento claro de los conceptos básicos utilizados en la física nuclear.
Los primeros pasos que dio el hombre para la obtención y transformación de esta clase de energía, data de los años 1930-1945, cuando se obtuvo en forma artificial y controlada esta forma de energía, para la construcción de la primera bomba atómica. Desde entonces se han realizado adelantos he investigaciones en este campo para su aplicación para el beneficio de la humanidad.
  1. ENERGIA
La Energía es un concepto esencial de las ciencias. Desde un punto de vista material complejo de definir. La más básica de sus definiciones indica que se trata de la capacidad que poseen los cuerpos para producir Trabajo, es decir la cantidad de energía que contienen los cuerpos se mide por el trabajo que son capaces de realizar.
La realidad del mundo físico demuestra que la energía, siendo única, puede presentarse bajo diversas Formas capaces de Transformarse unas a otras.
  • Formas de Energía
Algunas formas básicas de energía son:
Por ejemplo, aquella que poseen los cuerpos en movimiento, o bien la interacción gravitatoria entre la Tierra y la Luna.
  • Energía Electromagnética.
Generada por Campos Electrostáticos, Campos Magnéticos o bien por Corrientes Eléctricas.
  • Energía Térmica.
Energía interna de los cuerpos que se manifiesta externamente en forma de Calor.
Energía que poseen los compuestos. Se pone de manifiesto por el proceso de conversión generado en una reacción química.
  • Energía Metabólica.
Es la generada por los organismos vivos gracias a procesos químicos de oxidación como producto de los alimentos que ingieren.
  • Fuentes y transformaciones de energía
Las fuentes de energía se pueden clasificar en:
  1. Fuentes de energía renovables
Las energías renovables son aquellas que llegan en forma contínua a la Tierra y que a escalas de tiempo real parecen ser inagotables.
Son fuentes de energía renovable:
  • Energía Hidráulica
Es aquella energía obtenida principalmente de las corrientes de agua de los ríos. El agua de un río se almacena en grandes embalses artificiales que se ubican a gran altura respecto de un nivel de referencia. El agua adquiere una importante cantidad de energía potencial (aquella que poseen los cuerpos que se encuentran a cierta altura respecto de un nivel de referencia). Posteriormente, el agua se deja caer por medio de ductos hasta el nivel de referencia, por lo tanto toda su energía potencial se forma en energía cinética (aquella que posee un cuerpo gracias a su estado de movimiento). La energía cinética de las caídas de agua se aprovecha, por ejemplo, para mover turbinas generadoras de electricidad, tal es el principio de las Centrales Hidroeléctricas.
  • Energía Solar
Es la energía que llega a la Tierra proveniente de la estrella más cercana a nuestro planeta: El Sol. Esta energía abarca un amplio espectro de Radiación Electromagnética, donde la luz solar es la parte visible de tal espectro. La energía solar es generada por la llamada Fusión Nuclear que es la fuente de vida de todas las estrellas del Universo.
El hombre puede transformar la energía solar en energía térmica o eléctrica. En el primer caso la energía solar es aprovechada para elevar la temperatura de un fluido, como por ejemplo el agua, y en el segundo caso la energía luminosa del sol transportada por sus fotones de luz incide sobre la superficie de un material semiconductor (ej.: el silicio), produciendo el movimiento de ciertos electrones que componen la estructura atómica del material. Un movimiento de electrones produce una corriente eléctrica que se puede utilizar como fuente de energía de componentes eléctricos o bien electrónicos. Es el caso del principio de funcionamiento de las calculadoras solares.
  • Energía Eólica
Esta energía es producida por los vientos generados en la atmósfera terrestre. Se puede transformar en energía eléctrica mediante el uso de turbinas eólicas que basan su funcionamiento en el giro de aspas movidas por los vientos. Bajo el mismo principio se puede utilizar como mecanismo de extracción de aguas subterráneas o de ciertos tipos de molinos para la agricultura.
Al igual que la energía solar se trata de un tipo de energía limpia, la cual sin embargo presenta dificultades, pues no existen en la naturaleza flujos de aire constantes en el tiempo, más bien son dispersos e intermitentes.
Este tipo de energía puede ser de gran utilidad en regiones aisladas y de difícil acceso y que tienen necesidades de energía eléctrica, y cuyos vientos son apreciables en el transcurso del año.
  • Biomasa
Esta energía se obtiene de ciertos compuestos orgánicos que se han producido en el tiempo por procesos naturales, es decir, producto de transformaciones químicas y biológicas sobre algunas especies vegetales o bien sobre ciertos materiales. Un ejemplo de tal proceso lo constituyen los residuos forestales, los residuos de la agricultura y los residuos domésticos. Estos residuos se transforman con posterioridad en combustibles. En el caso de los residuos domésticos es necesario como paso previo a la obtención de energía, un plan amplio para la adecuada clasificación de las basuras y su posterior reciclaje.
  • Energía Mareomotriz
Es la energía obtenida del movimiento de las mareas y las olas del mar. El Movimiento de mareas es generado por la interacción gravitatoria entre la Tierra y la Luna. Tal movimiento se utiliza para traspasar energía cinética a generadores de electricidad.
La gran dificultad para la obtención de este tipo de energía es por una parte su alto costo y el establecimiento de un lugar apto geográficamente para confinar grandes masas de agua en recintos naturales.
  1. Fuentes de energía no renovables
Son fuentes de energía no renovables aquellas que se encuentran en forma limitada en nuestro planeta y se agotan a medida que se les consume.
Son fuentes de energía no renovables:
  • El Carbón
  • El Petróleo
  • El Gas Natural
  • La Energía Geotérmica
  • La Energía Nuclear (Esta forma de energía será explicada en el Capitulo III ENERGIA NUCLEAR)
  • El Carbón
Es un combustible fósil, formado por la acumulación de vegetales durante el Periodo Carbonífero de la era Primaria de nuestro planeta. Estos vegetales a lo largo del tiempo han sufrido el encierro en el subsuelo terrestre, experimentando cambios de presión y temperatura lo que ha posibilitado la acción de reacciones químicas que los han transformado en variados tipos de carbón mineral.
  • El Petróleo
Es un aceite natural de origen mineral constituido por una mezcla de hidrocarburos. Estos hidrocarburos se producen por antiguos restos de organismos vegetales, organismos acuáticos y organismos vivos depositados en las profundidades de la corteza terrestre en forma de sedimentos.
  • El Gas Natural
Es una mezcla de gases combustibles depositados en forma natural en el subsuelo de la Tierra y que poseen un gran poder calorífico. En ocasiones los yacimientos de gas natural se encuentran acompañados por yacimientos de petróleo.
El principal componente del gas natural es el metano y en menor proporción los gases de etano, propano y butano.
  • Energía Geotérmica
Energía contenida también en el interior de la Tierra en forma de gases. Al ser extraída se presenta en forma de gases de alta temperatura (fumarolas), en forma de vapor y agua hirviendo (geyser) y en forma de agua caliente (fuentes termales).
  1. Energia Nuclear
La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión Nuclear (división de núcleos atómicos pesados) o bien por Fusión Nuclear (unión de núcleos atómicos muy livianos). En las reacciones nucleares se libera una gran cantidad de energía debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía. Lo anterior se puede explicar basándose en la relación Masa-Energía producto de la genialidad del gran físico Albert Einstein.
Con relación a la liberación de energía, una reacción nuclear es un millar de veces más energética que una reacción química, por ejemplo la generada por la combustión del combustible fósil del metano.
ELEMENTOS DE FISICA NUCLEAR
  • Un Poco de Historia
Cinco siglos antes de Cristo, los filósofos griegos se preguntaban si la materia podía ser dividida indefinidamente o si llegaría a un punto que tales partículas fueran indivisibles. Es así, como Demócrito formula la teoría de que la materia se compone de partículas indivisibles, a las que llamó átomos (del griego átomos, indivisible).
En 1803 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia se podía dividir en dos grandes grupos: los elementos y los compuestos. Los elementos estarían constituidos por unidades fundamentales, que en honor a Demócrito, Dalton denominó átomos. Los compuestos se constituirían de moléculas, cuya estructura viene dada por la unión de átomos en proporciones definidas y constantes. La teoría de Dalton seguía considerando el hecho de que los átomos eran partículas indivisibles.
Hacia finales del siglo XIX, se descubrió que los átomos no son indivisibles, pues se componen de varios tipos de partículas elementales. La primera en ser descubierta fue el electrón en el año 1897 por el investigador Sir Joseph Thomson, quién recibió el Premio Nobel de Física en 1906. Posteriormente, Hantaro Nagaoka (1865-1950) durante sus trabajos realizados en Tokio, propone su teoría según la cual los electrones girarían en órbitas alrededor de un cuerpo central cargado positivamente, al igual que los planetas alrededor del Sol. Hoy día sabemos que la carga positiva del átomo se concentra en un denso núcleo muy pequeño, en cuyo alrededor giran los electrones.
El núcleo del átomo se descubre gracias a los trabajos realizados en la Universidad de Manchester, bajo la dirección de Ernest Rutherford entre los años 1909 a 1911. El experimento utilizado consistía en dirigir un haz de partículas de cierta energía contra una plancha metálica delgada, de las probabilidades que tal barrera desviara la trayectoria de las partículas, se dedujo la distribución de la carga eléctrica al interior de los átomos.
  • Constitución del Atomo y Modelos Atómicos
La descripción básica de la constitución atómica, reconoce la existencia de partículas con carga eléctrica negativa, llamados electrones, los cuales giran en diversas órbitas (niveles de energía) alrededor de un núcleo central con carga eléctrica positiva. El átomo en su conjunto y sin la presencia de perturbaciones externas es eléctricamente neutro.
El núcleo lo componen los protones con carga eléctrica positiva, y los neutrones que no poseen carga eléctrica.
El tamaño de los núcleos atómicos para los diversos elementos están comprendidos entre una cienmilésima y una diezmilésima del tamaño del átomo.
La cantidad de protones y de electrones presentes en cada átomo es la misma. Esta cantidad recibe el nombre de número atómico, y se designa por la letra "Z". A la cantidad total de protones más neutrones presentes en un núcleo atómico se le llama número másico y se designa por la letra "A".
Si designamos por "X" a un elemento químico cualquiera, su número atómico y másico se representa por la siguiente simbología:
ZXA
Por ejemplo, para el Hidrogeno tenemos: 1H1.
Si bien, todas las características anteriores de la constitución atómica, hoy en día son bastante conocidas y aceptadas, a través de la historia han surgido diversos modelos que han intentado dar respuesta sobre la estructura del átomo. Algunos de tales modelos son los siguientes:
  1. Thomson sugiere un modelo atómico que tomaba en cuenta la existencia del electrón, descubierto por él en 1897. Su modelo era estático, pues suponía que los electrones estaban en reposo dentro del átomo y que el conjunto era eléctricamente neutro. Con este modelo se podían explicar una gran cantidad de fenómenos atómicos conocidos hasta la fecha. Posteriormente, el descubrimiento de nuevas partículas y los experimentos llevado a cabo por Rutherford demostraron la inexactitud de tales ideas.
  2. El Modelo de Thomson Basado en los resultados de su trabajo que demostró la existencia del núcleo atómico, Rutherford sostiene que casi la totalidad de la masa del átomo se concentra en un núcleo central muy diminuto de carga eléctrica positiva. Los electrones giran alrededor del núcleo describiendo órbitas circulares. Estos poseen una masa muy ínfima y tienen carga eléctrica negativa. La carga eléctrica del núcleo y de los electrones se neutralizan entre sí, provocando que el átomo sea eléctricamente neutro.
    El modelo de Rutherford tuvo que ser abandonado, pues el movimiento de los electrones suponía una pérdida continua de energía, por lo tanto, el electrón terminaría describiendo órbitas en espiral, precipitándose finalmente hacia el núcleo. Sin embargo, este modelo sirvió de base para el modelo propuesto por su discípulo Neils Bohr, marcando el inicio del estudio del núcleo atómico, por lo que a Rutherford se le conoce como el padre de la era nuclear.
  3. El Modelo de Rutherford El físico danés Niels Bohr (Premio Nobel de Física 1922), postula que los electrones giran a grandes velocidades alrededor del núcleo atómico. Los electrones se disponen en diversas órbitas circulares, las cuales determinan diferentes niveles de energía. El electrón puede acceder a un nivel de energía superior, para lo cual necesita "absorber" energía. Para volver a su nivel de energía original es necesario que el electrón emita la energía absorbida (por ejemplo en forma de radiación). Este modelo, si bien se ha perfeccionado con el tiempo, ha servido de base a la moderna física nuclear.
  4. El Modelo de Bohr
  5. Modelo Mecano - Cuántico
Se inicia con los estudios del físico francés Luis De Broglie, quién recibió el Premio Nobel de Física en 1929. Según De Broglie, una partícula con cierta cantidad de movimiento se comporta como una onda. En tal sentido, el electrón tiene un comportamiento dual de onda y corpúsculo, pues tiene masa y se mueve a velocidades elevadas. Al comportarse el electrón como una onda, es difícil conocer en forma simultánea su posición exacta y su velocidad, por lo tanto, sólo existe la probabilidad de encontrar un electrón en cierto momento y en una región dada en el átomo, denominando a tales regiones como niveles de energía. La idea principal del postulado se conoce con el nombre de Principio de Incertidumbre de Heisenberg.
  • Radiactividad
  1. En Febrero de 1896, el físico francés Henri Becquerel investigando con cuerpos fluorescentes (entre ellos el Sulfato de Uranio y el Potasio), halló una nueva propiedad de la materia a la que posteriormente Marie Curie llamó "Radiactividad". Se descubre que ciertos elementos tenían la propiedad de emitir radiaciones semejantes a los rayos X en forma espontánea. Tal radiación era penetrante y provenía del cristal de Uranio sobre el cual se investigaba.
    Marie y Pierre Curie al proseguir los estudios encontraron fuentes de radiación natural bastante más poderosas que el Uranio original, entre estos el Polonio y el Radio.
    La radiactividad del elemento no dependía de la naturaleza física o química de los átomos que lo componen, sino que era una propiedad radicada en el interior mismo del átomo.
    Hoy en día se conocen más de 40 elementos radiactivos naturales, que corresponden a los elementos más pesados. Por arriba del número atómico 83, todos los núcleos naturales son radiactivos.
    Desintegraciones Alfa, Beta, Gamma.
    La radiactividad es un fenómeno que se origina exclusivamente en el núcleo de los átomos radiactivos. La causa que los origina probablemente se debe a la variación en la cantidad de partículas que se encuentran en el núcleo.
    Cuando el núcleo atómico es inestable a causa del gran número de protones que posee (ocurre en los elementos más pesados, es decir con Z = 83 o superior), la estabilidad es alcanzada, con frecuencia, emitiendo una partícula alfa, es decir, un núcleo de Helio (2He4) formado por dos protones y dos neutrones.
    Cuando la relación de neutrones/protones en un núcleo atómico es elevada, el núcleo se estabiliza emitiendo un neutrón, o bien como ocurre con frecuencia, emitiendo una partícula beta, es decir, un electrón.
    Cuando la relación de neutrones/protones es muy pequeña, debe ocurrir una disminución en el número de protones o aumentar el número de neutrones para lograr la estabilidad del núcleo. Esto ocurre con la emisión de un electrón positivo o positrón, o bien absorbiendo el núcleo un electrón orbital.
    Los rayos gamma son ondas electromagnéticas de gran energía, muy parecidos a los rayos X, y en ciertas ocasiones se presentan cuando ocurre una desintegración de partículas beta, o bien una emisión de positrones. Por lo tanto, la radiación gamma no posee carga eléctrica y su naturaleza ondulatoria permite describir su energía en relación a su frecuencia de emisión.
  2. Radiactividad Natural
  3. Radiactividad Artificial
Al bombardear diversos núcleos atómicos con partículas alfa de gran energía, se pueden transformar en un núcleo diferente, por lo tanto, se transforma en un elemento que no existe en la naturaleza. Los esposos Irene Curie y Frédéric Joliot, experimentando con tales procesos descubren la radiactividad artificial, pues se percatan que al bombardear ciertos núcleos con partículas procedentes de fuentes radiactivas estos se vuelven radiactivos. Si la energía de las partículas es adecuada, entonces puede penetrar en el núcleo generando su inestabilidad y por ende, induciendo su desintegración radiactiva.
Desde el descubrimiento de los primeros elementos radiactivos artificiales, el hombre ha logrado en el tiempo obtener una gran cantidad de ellos. Es clave en este proceso la aparición de los llamados aceleradores de partículas y de los reactores nucleares. Estos últimos son fuente importante de neutrones que son utilizados para producir gran variedad de radioisótopos.
  • Radiaciones
  1. Son radiaciones con energía necesaria para arrancar electrones de los átomos. Cuando un átomo queda con un exceso de carga eléctrica, ya sea positiva o negativa, se dice que se ha convertido en un ión (positivo o negativo).
    Son radiaciones ionizantes los rayos X, las radiaciones alfa, beta, gamma y la emisión de neutrones.
    La radiación cósmica (proveniente del Sol y del espacio interestelar) también es un tipo de radiación ionizante, pues está compuesta por radiaciones electromagnéticas y por partículas con gran cantidad de energía. Es así como, los llamados rayos cósmicos blandos, se componen principalmente de rayos gamma, electrones o positrones, y la radiación cósmica primaria (que llega a las capas más altas de la atmósfera) se compone fundamentalmente de protones. Cuando la radiación cósmica interactúa con la atmósfera de la Tierra, se forman en ella átomos radiactivos (como el Tritio y el Carbono-14) y se producen partículas alfa, neutrones o protones.
    Las radiaciones ionizantes pueden provocar reacciones y cambios químicos con el material con el cual interaccionan. Por ejemplo, son capaces de romper los enlaces químicos de las moléculas o generar cambios genéticos en células reproductoras.
  2. Radiaciones Ionizantes
  3. Radiaciones No Ionizantes
Son aquellas que no son capaces de producir iones al interactuar con los átomos de un material.
Las radiaciones no ionizantes se pueden clasificar en dos grandes grupos: los campos electromagnéticos y las radiaciones ópticas.
Dentro de los campos electromagnéticos se pueden distinguir aquellos generados por las líneas de corriente eléctrica o por campos eléctricos estáticos. Otros ejemplos son las ondas de radiofrecuencia, utilizadas por las emisoras de radio en sus transmisiones, y las microondas utilizadas en electrodomésticos y en el área de las telecomunicaciones.
Entre las radiaciones ópticas se pueden mencionar los rayos láser, los rayos infrarrojos, la luz visible y la radiación ultravioleta. Estas radiaciones pueden provocar calor y ciertos efectos fotoquímicos al actuar sobre el cuerpo humano.
  • Fisión Nuclear
Es una reacción nuclear que tiene lugar por la rotura de un núcleo pesado al ser bombardeado por neutrones de cierta velocidad. A raíz de esta división el núcleo se separa en dos fragmentos acompañado de una emisión de radiación, liberación de 2 ó 3 nuevos neutrones y de una gran cantidad de energía (200 MeV) que se transforma finalmente en calor.
Los neutrones que escapan de la fisión, al bajar su energía cinética, se encuentran en condiciones de fisionar otros núcleos pesados, produciendo una Reacción Nuclear en Cadena. Cabe señalar, que los núcleos atómicos utilizados son de Uranio - 235.
El proceso de la fisión permite el funcionamiento de los Reactores Nucleares que actualmente operan en el mundo.
  • Fusión Nuclear
La fusión nuclear ocurre cuando dos núcleos atómicos muy livianos se unen, formando un núcleo atómico más pesado con mayor estabilidad. Estas reacciones liberan energías tan elevadas que en la actualidad se estudian formas adecuadas para mantener la estabilidad y confinamiento de las reacciones.
La energía necesaria para lograr la unión de los núcleos se puede obtener utilizando energía térmica o bien utilizando aceleradores de partículas. Ambos métodos buscan que la velocidad de las partículas aumente para así vencer las fuerzas de repulsión electrostáticas generadas al momento de la colisión necesaria para la fusión.
Para obtener núcleos de átomos aislados, es decir, separados de su envoltura de electrones, se utilizan gases sobrecalentados que constituyen el denominado Plasma Físico. Este proceso es propio del Sol y las estrellas, pues se tratan de gigantescas estructuras de mezclas de gases calientes atrapadas por las fuerzas de gravedad estelar.
El confinamiento de las partículas se logra utilizando un "Confinamiento Magnético", o bien un "Confinamiento Inercial". El Confinamiento Magnético aprovecha el hecho que el plasma está compuesto por partículas (núcleos) con carga eléctrica. Se sabe que si una de estas partículas interactúa con un Campo Magnético su trayectoria y velocidad cambian, quedando atrapadas por dicho Campo. El Confinamiento Inercial permite comprimir el plasma hasta obtener densidades de 200 a 1000 veces mayor que la de sólidos y líquidos. Cuando se logra la compresión deseada se eleva la temperatura del elemento, lo que facilita aún más el proceso de la fusión.
La fusión nuclear se puede representar por el siguiente esquema y relación de equilibrio:
2H + 2H 3He + 1n+ 3,2 MeV
  1. INTERACCION DE LA RADIACION IONIZANTE CON LA MATERIA
El efecto inmediato de las radiaciones ionizantes al interactuar con la materia es la ionización, es decir la creación de iones positivos o negativos.
Otro efecto que genera la radiación ionizante es conocido con el nombre de "excitación del átomo". La excitación ocurre cuando un electrón salta a una órbita o nivel de energía superior, para después volver a su órbita original, emitiendo energía en el transcurso del proceso.
  1. La partícula alfa se compone de 2 protones y 2 neutrones. Su poder de penetración en la materia es muy bajo y sólo es capaz de recorrer algunos centímetros en el aire. Su corto recorrido describe una trayectoria prácticamente en línea recta. Cuando penetra la materia presenta un alto poder de ionización, formando verdaderas columnas de iones ( cuando penetra en un centímetro de aire puede producir hasta 30.000 pares de iones).

  2. Interacción de las Radiaciones Alfa con la Materia La masa de las partículas beta (electrones negativos) es muy pequeña, por lo tanto, su movilidad es mayor respecto de las partículas alfa. Durante su recorrido cambia fácilmente de trayectoria y su alcance y poder de penetración es mayor. Además, su poder de ionización es inferior, respecto de la partícula alfa.
    Si una partícula beta se acerca a un núcleo atómico, desvía su trayectoria y pierde parte de su energía (se "frena"). La energía que ha perdido se transforma en rayos X. Este proceso recibe el nombre de "Radiación de Frenado".
    Otra interesante reacción ocurre cuando una partícula beta colisiona con un positrón (electrón positivo). En este proceso, ambas partículas se aniquilan y desaparecen, liberando energía en forma de rayos gamma.

  3. Interacción de la Radiaciones Beta con la Materia Las radiaciones gamma carecen de carga eléctrica, por lo tanto, no sufren desviaciones en su trayectoria como producto de la acción de campos eléctricos de núcleos atómicos o electrones. Tales características permiten que la radiación gamma sea capaz de traspasar grandes espesores de material y de ionizar indirectamente las sustancias que encuentra en su recorrido.
    Un rayo gamma es capaz de sacar un electrón de su órbita atómica. El electrón arrancado producirá ionización en nuevos átomos circundantes, lo que volverá a suceder hasta que se agote toda la energía de la radiación gamma incidente.
  4. Interacción de las Radiaciones Gamma con la Materia
  5. Interacción de los Neutrones con la Materia
Los neutrones también carecen de carga eléctrica y no sufren la acción de campos eléctricos ni magnéticos. Al igual que la radiación gamma son capaces de atravesar grandes espesores de material.
Cuando un neutrón choca con un átomo le cede parte de su energía mediante la acción de choques elásticos (la energía total del sistema se mantiene constante) e inelásticos (la energía total del sistema no se conserva). Como producto de los sucesivos choques el neutrón pierde velocidad en forma gradual, hasta alcanzar una magnitud de 2.200 metros/segundo. A estos neutrones se les denomina "Neutrones Térmicos".
Si un neutrón colisiona con un núcleo atómico y sus masas son muy parecidas, entonces el neutrón pierde una gran cantidad de energía. Mayor será la pérdida de energía mientras más se asemejen sus masas. Por lo tanto, los choques que aseguran gran pérdida de energía ocurren con los núcleos de los átomos de Hidrógeno. El proceso por el cual los neutrones reducen su velocidad en forma gradual recibe el nombre de "Termalización" o "Moderación de Neutrones".
Los neutrones térmicos se pueden desintegrar, formando un protón y un electrón, o bien pueden ser absorbidos por los núcleos de los átomos circundantes, dando lugar a reacciones nucleares, como por ejemplo la fisión nuclear
  1. REACTORES NUCLEARES
  1. Es una instalación física donde se produce, mantiene y controla una reacción nuclear en cadena. Por lo tanto, en un reactor nuclear se utiliza un combustible adecuado que permita asegurar la normal producción de energía generada por las sucesivas fisiones. Algunos reactores pueden disipar el calor obtenido de las fisiones, otros sin embargo utilizan el calor para producir energía eléctrica.
    El primer reactor construido en el mundo fue operado en 1942, en dependencias de la Universidad de Chicago (USA), bajo la atenta dirección del famoso investigador Enrico Fermi. De ahí el nombre de "Pila de Fermi", como posteriormente se denominó a este reactor. Su estructura y composición eran básicas si se le compara con los reactores actuales existentes en el mundo, basando su confinamiento y seguridad en sólidas paredes de ladrillos de grafito.
  2. ¿Que Es Un Reactor Nuclear?
  3. Elementos De Un Reactor Nuclear

1. Núcleo 2. Barras de control 3. Generador de vapor
4. Presionador 5. Vasija 6. Turbina
7. Alternador 8. Condensador 9. Agua de refrigeración
10. Agua de refrigeración 11. Contención de hormigón
  • El Combustible:
Material fisionable utilizado en cantidades específicas y dispuesto en forma tal, que permite extraer con rapidez y facilidad la energía generada. El combustible en un reactor se encuentra en forma sólida, siendo el más utilizado el Uranio bajo su forma isotópica de U-235. Sin embargo, hay elementos igualmente fisionables, como por ejemplo el Plutonio que es un subproducto de la fisión del Uranio.
En la naturaleza existe poca cantidad de Uranio fisionable, es alrededor del 0,7%, por lo que en la mayoría de los reactores se emplea combustible "enriquecido", es decir, combustible donde se aumenta la cantidad de Uranio 235.
  • Barras de Combustible:
Son el lugar físico donde se confina el Combustible Nuclear. Algunas Barras de Combustible contienen el Uranio mezclado en Aluminio bajo la forma de laminas planas separadas por una cierta distancia que permite la circulación de fluido para disipar el calor generado. Las laminas se ubican en una especie de caja que les sirve de soporte.
  • Núcleo del Reactor:
Esta constituido por las Barras de Combustible. El núcleo posee una forma geométrica que le es característica, refrigerado por un fluido, generalmente agua. En algunos reactores el núcleo se ubica en el interior de una piscina con agua a unos 10 a 12 metros de profundidad, o bien al interior de una vasija de presión construida en acero.
  • Barras de Control:
Todo reactor posee un sistema que permite iniciar o detener las fisiones nucleares en cadena. Este sistema lo constituyen las Barras de Control, capaces de capturar los neutrones que se encuentran en el medio circundante. La captura neutrónica evita que se produzcan nuevas fisiones de núcleos atómicos del Uranio. Generalmente las Barras de Control se fabrican de Cadmio o Boro.
  • Moderador:
Los neutrones obtenidos de la fisión nuclear emergen con velocidades muy altas (neutrones rápidos). Para asegurar continuidad de la reacción en cadena, es decir, procurar que los "nuevos neutrones" sigan colisionando con los núcleos atómicos del combustible, es necesario disminuir la velocidad de estas partículas (neutrones lentos). Se disminuye la energía cinética de los neutrones rápidos mediante choques con átomos de otro material adecuado, llamado Moderador. Se utiliza como Moderador el agua natural (agua ligera), el agua pesada, el Carbono (grafito), etc..
  • Refrigerante:
El calor generado por las fisiones se debe extraer del núcleo del reactor. Para lograr este proceso se utilizan fluidos en los cuales se sumerge el núcleo. El fluido no debe ser corrosivo, debe poseer gran poder de absorción calorífico y tener pocas impurezas. Se puede utilizar de refrigerante el agua ligera, el agua pesada, el anhídrido carbónico, etc..
  • Blindaje:
En un reactor se produce gran cantidad de todo tipo de Radiaciones, las cuales se distribuyen en todas direcciones. Para evitar que los operarios del reactor y el medio externo sean sometidos indebidamente a tales radiaciones, se utiliza un adecuado "Blindaje Biológico" que rodea al reactor. Los materiales más usados en la construcción de blindajes para un reactor son el agua, el plomo y el hormigón de alta densidad, cuyo espesor es superior a los 1,5 metros.
  1. Tipos De Reactores Nucleares
Existen dos tipos de reactores:
Utilizan los neutrones generados en la fisión para producir radioisótopos o bien para realizar diversos estudios en materiales.
Estos reactores utilizan el calor generado en la fisión para producir energía eléctrica, desalinización de agua de mar, calefacción, o bien para sistemas de propulsión.
Hay dos tipos de reactores de potencia de mayor uso en el mundo: el Reactor de Agua en Ebullición y el Reactor de Agua a Presión:
  1. Reactor de Agua en Ebullición (BWR)
Ha sido desarrollado principalmente en Estados Unidos, Suecia y Alemania. Utiliza agua natural purificada como moderador y refrigerante. Como combustible dispone de Uranio-238 enriquecido con Uranio-235, el cual como se sabe, facilita la generación de fisiones nucleares.

El calor generado por la reacciones en cadena se utiliza para hacer hervir el agua. El vapor producido se introduce en una turbina que acciona un generador eléctrico. El vapor que sale de la turbina pasa por un condensador, donde es transformado nuevamente en agua líquida. Posteriormente vuelve al reactor al ser impulsada por un bomba adecuada.
  1. Núcleo del reactor 2. Barras de control
3. Cambiador de calor (generador de vapor) 4. Presionador
5. Vasija. 6. Turbina. 7. Alternador.
8. Bomba. 9. Condensador.
10. Agua de refrigeración. 11. Transformador.
12. Recinto de contención de hormigón armado.
13. Contención primaria de acero.
  1. Reactor de Agua a Presión (PWR)
Es ampliamente utilizado en Estados Unidos, Alemania, Francia y Japón. El refrigerante es agua a gran presión. El moderador puede ser agua o bien grafito. Su combustible también es Uranio-238 enriquecido con Uranio-235. El reactor se basa en el principio de que el agua sometida a grandes presiones puede evaporarse sin llegar al punto de ebullición, es decir a temperaturas mayores de 100 °C. El vapor se produce a unos 600 °C, el cual pasa a un intercambiador de calor donde es enfriado y condensado para volver en forma líquida al reactor. En el intercambio hay traspaso de calor a un circuito secundario de agua. El agua del circuito secundario, producto del calor, produce vapor, que se introduce en una turbina que acciona un generador eléctrico.

1. Núcleo del reactor. 2. Barras de control

  1. Cambiador de calor (generador de vapor).
4. Presionador 5. Vasija 6. Turbina.
7. Alternador. 8. Bomba 9. Condesador
10. Agua de refrigeración. 11. Transformador.
12. Recinto de contención de hormigón armado.
Existen otros criterios para clasificar diversos tipos de reactores:
  • Según la velocidad de los neutrones que emergen de las reacciones de fisión. Se habla de reactores rápidos o bien reactores térmicos.
  • Según el combustible utilizado. Hay reactores de Uranio natural ( la proporción de Uranio utilizado en el combustible es muy cercana a la que posee en la naturaleza), de Uranio enriquecido (se aumenta la proporción de Uranio en el combustible).
  • Según el moderador utilizado. Se puede utilizar como moderador el agua ligera, el agua pesada o el grafito.
  • Según el refrigerante utilizado. Se utiliza como refrigerante el agua (ligera o pesada), un gas (anhídrido carbónico, aire), vapor de agua, sales u otros líquidos. Estos materiales pueden actuar en cierto tipo de reactores como refrigerante y moderador a la vez.
  1. Seguridad En Los Reactores Nucleares
  • Sistemas de Control.
Básicamente está constituido por las barras de control y por diversa instrumentación de monitoreo. Las barras de control son accionadas por una serie de sistemas mecánicos, eléctricos u electrónicos, de tal manera de asegurar con rapidez la extinción de las reacciones nucleares.
La instrumentación de monitoreo se ubica en el interior o en el exterior del núcleo del reactor y su finalidad es mantener constante vigilancia de aquellos parámetros necesarios para la seguridad: presión, temperatura, nivel de radiación, etc..


  • Sistemas de Contención.
Constituido por una serie de barreras múltiples que impiden el escape de la radiación y de los productos radiactivos. La primera barrera, en cierto tipo de reactores, es un material cerámico que recubre el Uranio utilizado como elemento combustible. La segunda barrera es la estructura que contiene al Uranio, es decir, se trata de las barras de combustible.
La tercera barrera es la vasija que contiene el núcleo del reactor. En los reactores de potencia se denomina vasija de presión y se construye de un acero especial con un revestimiento interior de acero inoxidable.
La cuarta barrera la constituye el edificio que alberga al reactor en su conjunto. Se conoce con el nombre de "Edificio de Contención" y se construye de hormigón armado de, a lo menos, 90 cm de espesor. Se utiliza para prevenir posibles escapes de productos radiactivos al exterior, resistir fuertes impactos internos o externos, soportar grandes variaciones de presión y mantener una ligera depresión en su interior que asegure una entrada constante de aire desde el exterior, de tal forma de evitar cualquier escape de material activado.
  • Concepto de Seguridad a Ultranza.
Toda central nuclear se diseña y construye bajo el concepto de Seguridad a Ultranza, es decir, se privilegia ante todo la seguridad de toda instalación. Se busca reducir al mínimo posible toda exposición a las radiaciones, no sólo en caso de accidente, sino durante las operaciones normales de su personal.
  • Ciclo Del Combustible Nuclear
El Ciclo del Combustible Nuclear son todos los procesos por los cuales se somete al Uranio desde que se extrae de la tierra hasta su utilización en el reactor y su posterior reelaboración o su almacenamiento como residuo. Consta de las siguientes etapas:
  • Primera etapa de minería y concentración del Uranio.
En esta etapa se extrae el mineral y se separa el Uranio que contiene. Posteriormente se eliminan las impurezas que aún contiene el mineral de Uranio obtenido en el proceso de separación inicial. La concentración del mineral consiste en utilizar procesos físico-químicos para aumentar los contenidos de Uranio a valores superiores al 70%. En todo el proceso se utiliza Uranio natural cuya composición isótopica es de aproximadamente: 99% de Uranio-238, 0,7% de Uranio-235 y 0,006% de Uranio-234.
  • Segunda etapa de Conversión y Enriquecimiento.
El Uranio concentrado se purifica por medio de sucesivos tratamientos en disoluciones y precipitaciones hasta que se convierte en un elemento llamado Hexafloruro de Uranio. Posteriormente el Hexafloruro de Uranio se enriquece, es decir, se aumenta la proporción de átomos de Uranio-235 con respecto al Uranio-238. Para ello se realiza una separación selectiva a nivel atómico, utilizando procesos de difusión gaseosa, ultracentrifugación, procesos aerodinámicos, intercambio químico o métodos de separación por láser.
  • Tercera etapa de Fabricación de Elementos Combustibles.
El Uranio enriquecido se somete a presión y altas temperaturas para transformarlo en pequeños cuerpos cerámicos. Las pastillas cerámicas se colocan en el interior de unas varillas rellenadas con un gas inerte. Las varillas se apilan en un tubo fabricado de una aleación de circonio, dando forma al llamado Elemento Combustible.
  • Cuarta etapa de Uso del Combustible en un reactor.
Los Elementos Combustibles se introducen en el interior del reactor y forman parte del núcleo del mismo. El Uranio presente en los Elementos Combustibles genera las fisiones que activan al reactor y a medida que transcurre el tiempo se gasta, dejando como desecho los productos de fisión, por ejemplo el Plutonio.
En las centrales de potencia el combustible gastado se almacena temporalmente en la propia instalación, en una piscina especialmente adecuada para ello, lo que permite bajar la actividad de los productos de fisión de vida corta.
  • Quinta etapa de Reelaboración.
Se sabe que en el combustible gastado se ha consumido sólo una pequeña fracción del Uranio que contiene. Se procede entonces a la reelaboración del combustible con el objeto de separar el Uranio que aún es utilizable. En el Proceso de reelaboración también se pueden aislar ciertas cantidades de Plutonio u otros productos de fisión, los cuales son de utilidad en el funcionamiento de algunos tipos de reactores. La reelaboración es compleja y demanda fuertes inversiones en plantas industriales de alta tecnología.
  • Sexta etapa de Almacenamiento de Residuos.
El almacenamiento de los residuos puede ser temporal o definitivo. El almacenamiento temporal supone, en algunos casos, el control y posterior reelaboración del combustible gastado. Si no es posible llevar a cabo la reelaboración el combustible gastado se almacena en forma definitiva.
Los residuos radiactivos se pueden clasificar según su origen, su forma (sólidos, líquidos, gaseosos), su nivel de radiactividad, por la vida media de los isótopos radiactivos que contienen (de vida larga, de vida corta), por la intensidad de las radiaciones que emiten, por su radiotoxicidad, o bien por sus necesidades de almacenamiento.
El almacenamiento definitivo generalmente se aplica a aquellos residuos de alta actividad y vida larga, y se puede realizar enterrándolos a distancias relativamente cortas respecto de la superficie terrestre (menos de 20 metros). También, se pueden almacenar en formaciones geológicas de mediana o gran profundidad (decenas a centenares de metros).
Es importante señalar, que el volumen de residuos radiactivos producidos por una central nuclear dependerá de las características de orden técnico del reactor que los produce. Es así como, los reactores de investigación poseen un núcleo pequeño con alta emisión de neutrones, generando cantidades de residuos bastante menores en comparación a los reactores de potencia.
  1. USOS PACIFICOS DE LA ENERGIA NUCLEAR
Gracias al uso de reactores nucleares hoy en día es posible obtener importantes cantidades de material radiactivo a bajo costo. Es así como desde finales de los años 40, se produce una expansión en el empleo pacífico de diversos tipos de Isótopos Radiactivos en diversas áreas del quehacer científico y productivo del hombre.
Estas áreas se pueden clasificar en:
  1. Agricultura Y Alimentación
  1. Se sabe que algunos insectos pueden ser muy perjudiciales tanto para la calidad y productividad de cierto tipo de cosechas, como para la salud humana. En muchas regiones del planeta aún se les combate con la ayuda de gran variedad de productos químicos, muchos de ellos cuestionados o prohibidos por los efectos nocivos que producen en el organismo humano. Sin embargo, con la tecnología nuclear es posible aplicar la llamada "Técnica de los Insectos Estériles (TIE)", que consiste en suministrar altas emisiones de radiación ionizante a un cierto grupo de insectos machos mantenidos en laboratorio. Luego los machos estériles se dejan en libertad para facilitar su apareamiento con los insectos hembra. No se produce, por ende, la necesaria descendencia. De este modo, luego de sucesivas y rigurosas repeticiones del proceso, es posible controlar y disminuir su población en una determinada región geográfica. En Chile, se ha aplicado con éxito la técnica TIE para el control de la mosca de la fruta, lo que ha permitido la expansión de sus exportaciones agrícolas.
  2. Control de Plagas. La irradiación aplicada a semillas, después de importantes y rigurosos estudios, permite cambiar la información genética de ciertas variedades de plantas y vegetales de consumo humano. El objetivo de la técnica, es la obtención de nuevas variedades de especies con características particulares que permitan el aumento de su resistencia y productividad.
  3. Mutaciones.
  4. Conservación de Alimentos.
En el mundo mueren cada año miles de personas como producto del hambre, por lo tanto, cada vez existe mayor preocupación por procurar un adecuado almacenamiento y mantención de los alimentos. Las radiaciones son utilizadas en muchos países para aumentar el período de conservación de muchos alimentos. Es importante señalar, que la técnica de irradiación no genera efectos secundarios en la salud humana, siendo capaz de reducir en forma considerable el número de organismos y microorganismos patógenos presentes en variados alimentos de consumo masivo.
La irradiación de alimentos es aplicada en Chile en una planta de irradiación multipropósito ubicada en el Centro de Estudios Nucleares Lo Aguirre, con una demanda que obliga a su funcionamiento ininterrumpido durante los 365 días del año.
  1. Gracias al uso de las técnicas nucleares es posible desarrollar diversos estudios relacionados con recursos hídricos. En estudios de aguas superficiales es posible caracterizar y medir las corrientes de aguas lluvias y de nieve; caudales de ríos, fugas en embalses, lagos y canales y la dinámica de lagos y depósitos.
    En estudios de aguas subterráneas es posible medir los caudales de las napas, identificar el origen de las aguas subterráneas, su edad, velocidad, dirección, flujo, relación con aguas superficiales, conexiones entre acuíferos, porosidad y dispersión de acuíferos.
  2. Hidrología
  3. Medicina
  1. Se han elaborado radiovacunas para combatir enfermedades parasitarias del ganado y que afectan la producción pecuaria en general. Los animales sometidos al tratamiento soportan durante un período más prolongado el peligro de reinfección siempre latente en su medio natural.
  2. Vacunas Se ha extendido con gran rapidez el uso de radiaciones y de radioisótopos en medicina como agentes terapéuticos y de diagnóstico.
    En el diagnóstico se utilizan radiofármacos para diversos estudios de: Tiroides, Hígado, Riñón, Metabolismo, Circulación sanguínea, Corazón, Pulmón, Trato gastrointestinales.
    En terapia médica con las técnicas nucleares se puede combatir ciertos tipos de cáncer. Con frecuencia se utilizan tratamientos en base a irradiaciones con rayos gamma provenientes de fuentes de Cobalto-60, así como también, esferas internas radiactivas, agujas e hilos de Cobalto radiactivo. Combinando el tratamiento con una adecuada y prematura detección del cáncer, se obtienen terapias con exitosos resultados.
  3. Medicina Nuclear Se trata de un método y procedimiento de gran sensibilidad utilizado para realizar mediciones de hormonas, enzimas, virus de la hepatitis, ciertas proteínas del suero, fármacos y variadas sustancias.
    El procedimiento consiste en tomar muestras de sangre del paciente, donde con posterioridad se añadirá algún radioisótopo específico, el cual permite obtener mediciones de gran precisión respecto de hormonas y otras sustancias de interés.
  4. Radioinmunoanalisis
  5. Radiofarmacos
Se administra al paciente un cierto tipo de fármaco radiactivo que permite estudiar, mediante imágenes bidimensionales (centelleografía) o tridimensionales (tomografía), el estado de diversos órganos del cuerpo humano.
De este modo se puede examinar el funcionamiento de la tiroides, el pulmón, el hígado y el riñón, así como el volumen y circulación sanguíneos. También, se utilizan radiofármacos como el Cromo - 51 para la exploración del bazo, el Selenio - 75 para el estudio del páncreas y el Cobalto - 57 para el diagnóstico de la anemia.
  1. En esta área se utilizan técnicas nucleares para la detección y análisis de diversos contaminantes del medio ambiente. La técnica más conocida recibe el nombre de Análisis por Activación Neutrónica, basado en los trabajos desarrollados en 1936 por el científico húngaro J.G. Hevesy, Premio Nobel de Química en 1944. La técnica consiste en irradiar una muestra, de tal forma, de obtener a posteriori los espectros gamma que ella emite, para finalmente procesar la información con ayuda computacional. La información espectral identifica los elementos presentes en la muestra y las concentraciones de los mismos.
    Una serie de estudios se han podido aplicar a diversos problemas de contaminación como las causadas por el bióxido de azufre, las descargas gaseosas a nivel del suelo, en derrames de petróleo, en desechos agrícolas, en contaminación de aguas y en el smog generado por las ciudades.
  2. Medio Ambiente
  3. Industria e Investigación
  1. Se elaboran sustancias radiactivas que son introducidas en un determinado proceso. Luego se detecta la trayectoria de la sustancia gracias a su emisión radiactiva, lo que permite investigar diversas variables propias del proceso. Entre otras variables, se puede determinar caudales de fluidos, filtraciones, velocidades en tuberías, dinámica del transporte de materiales, cambios de fase de líquido a gas, velocidad de desgaste de materiales, etc..
  2. Trazadores Son instrumentos radioisótopicos que permiten realizar mediciones sin contacto físico directo. Se utilizan indicadores de nivel, de espesor o bien de densidad.
  3. Instrumentación Es posible obtener imágenes de piezas con su estructura interna utilizando radiografías en base a rayos gamma o bien con un flujo de neutrones. Estas imágenes reciben el nombre de Gammagrafía y Neutrografía respectivamente, y son de gran utilidad en la industria como método no destructivo de control de calidad. Con estos métodos se puede comprobar la calidad en soldaduras estructurales, en piezas metálicas fundidas, en piezas cerámicas, para análisis de humedad en materiales de construcción, etc..
  4. Imágenes Se emplean técnicas isotópicas para determinar la edad en formaciones geológicas y arqueológicas. Una de las técnicas utiliza el Carbono-14, que consiste en determinar la cantidad de dicho isótopo contenida en un cuerpo orgánico. La radiactividad existente, debida a la presencia de Carbono-14, disminuye a la mitad cada 5730 años, por lo tanto, al medir con precisión su actividad se puede inferir la edad de la muestra.
  5. Datación
  6. Investigación
Utilizando haces de neutrones generados por reactores, es posible llevar a cabo diversas investigaciones en el campo de las ciencias de los materiales. Por ejemplo, se puede obtener información respecto de estructuras cristalinas, defectos en sólidos, estudios de monocristales, distribuciones y concentraciones de elementos livianos en función de la profundidad en sólidos, etc..
En el ámbito de la biología, la introducción de compuestos radiactivos marcados ha permitido observar las actividades biológicas hasta en sus más mínimos detalles, dando un gran impulso a los trabajos de carácter genético.
  1. Areas de investigacion en Venezuela:
  1. Yacimientos petrolíferos se han estudiado mediante la radiometría termoluminiscente de radiaciones (DTL) para evaluarla como un método complementario a los métodos geofísicos y geológicos convencionales. El propósito de estos estudios es la demarcación de blancos en el yacimiento para el emplazamiento de pozos, o la extensión de yacimientos en producción. Teóricamente, la migración vertical a través de la columna geológica sedimentaria de los radioisótopos gaseosos producidos por el decaimiento de uranio, debe reflejar la presencia de ambientes reductores en el subsuelo, tales como, las acumulaciones de hidrocarburos: Estos ambientes reductores fijan el uranio en el estado de valencia inmóvil +4, creando una relación espacial entre la señal termoluminiscente en la superficie del suelo y la trampa petrolífera en el subsuelo
  2. Evaluación de DTL como técnica de investigación en la exploración de yacimientos petrolíferos:
  3. Calibración Dosimétrica
El Laboratorio Secundario de Calibración Dosimétrica del Instituto Venezolano de Investigaciones Científicas - IVIC, se encarga del control de calidad y la calibración de instrumentos y haces de radiación.

  1. Creación de una Maestría en Física Médica
  2. Aplicación de la Dosimetría Termoluniscente en el Radiodiagnóstico de Recien Nacidos
  3. Modernización de los Sistemas de Braquiterapia
  4. Evaluación de la Calidad de Imagen Diagnóstica en Lesiones de Miembros Torácicos y Pelvianos de Caballos Pura Sangre en el Servicio de Rayos-X del Hospital Veterinario del Hipódromo "La Rinconada"
  5. Estimación de la Dosis de Radiación Recibida por el Paciente Sometido a Estudios de Cateterismo Cardíaco y por el Personal que Realiza dichos Estudios.
  6. Determinación de la Linealidad de los Factores de Campo en Aceleradores Lineales Modalidad Fotones. CLINAC 4
Es tarea específica del Laboratorio Secundario de Calibración Dosimétrica (LSCD) mantener todos sus equipos dentro de las tolerancias establecidas por las recomendaciones de la Comisión Electrotécnica Internacional en cuanto atañe a patrones de medición, es decir, cumplir con los controles periódicos para la clasificación para la certificación de la calidad de sus instrumentos, tener los dosímetros, haces de radiación y fuentes calibrados, llevar los libros de control (historia) de toda su instrumentación rigurosamente al día, con el objeto de mantener la exactitud de las mediciones dentro de los rangos establecidos según su categoría.
Realiza el control de calidad y calibración de equipos de radioterapia: Unidades de Cobalto 60, Aceleradores Lineales, (modalidad fotones y electrones) y Unidades de Rayos X de energías baja y media. Inspecciona los ambientes de implantes en braquiterapia y controla blinajes de fuentes de Cesio-137 y su aplicación en braquiterapia. Realiza el control de calidad de unidades de Rayos-X en Servicios de Radiodiagnóstico.
  1. La Unidad de Tecnología Nuclear del Instituto Venezolano de Investigaciones Científicas - IVIC, fue creada en enero de 1991 con el propósito de agrupar los servicios que dependen de la radiación nuclear en sus actividades y tareas.
    El personal de la UTN comprende a investigadores, profesionales y especialistas asociados a la investigación, estudiantes graduados y asistentes, y personal administrativo y obrero.
    La Unidad realiza labores de investigación orientada y aplicada, así como labores de docencia. También presta multitud de servicios de asesoría y asistencia técnica en las áreas de salud e industria, a organismos oficiales y privados por intermedio del Centro Tecnológico.
  2. Unidad de Tecnología Nuclear
  3. Servicio de Ingeniería Nuclear
El Servicio de Ingeniería Nuclear del Instituto Venezolano de Investigaciones Científicas - IVIC, aplica técnicas para neutrongrafía y preparación de radioisótopos, y es responsable de la operación del reactor nuclear y de la fuente de Cobalto-60. Además, desarrolla métodos para la conservación de alimentos mediante la irradiación con rayos Gamma.

  1. Preservación de la Yuca (Manihot esculenta Crantz) mediante combinación de irradiación con otros métodos.
  2. Tolerancia de las Frutas Tropicales a Combinaciones de Métodos de Preservación y de Control Cuarentenario: Irradiación y Tratamiento Térmico de Melones
  3. Uso de Radiación Gamma para el Control de Vidrios en Productos Marinos
  4. Promoción del Desarrollo de Actividades en el Uso de las Radiaciones Ionizantes en el Campo de los Alimentos por parte de Grupos Externos al IVIC.
Esta unidad se ocupa de la esterilización, radurización y tratamiento de mutaciones de diferentes productos, a través de la utilización de los rayos gamma.

A los fines de mantener y mejorar la productividad de la instalación, ésta jefatura y su personal se ha dedicado a vender el producto a diferentes empresas públicas y privadas, obteniéndose un beneficio que ha permitido financiar el diseño, construcción, puesta a punto y mantenimiento de la nueva consola totalmente digitalizada, más segura y con una elevada confiabilidad.
  1. La energía nuclear es una forma de energía que se obtiene de la desintegración (fusión) o integración (fisión) de los átomos. Esta forma de energía es de tal magnitud que puede generar millones de watios de energía eléctrica en un solo proceso de fusión o fusión.
    Dicha energía se ha utilizado de muchas formas, pero principalmente en la construcción de armamento altamente destructivo, sin embargo su uso para el beneficio de la humanidad ha sido muy satisfactorio, implementándose en la medicina, elaboración y mantenimiento de alimentos, en el mantenimiento del medio ambiente, en la industria e investigación, y en la generación de energía eléctrica.
    Es de hacer notar, que sin embargo a pesar del uso pacífico que se la ha dado a la energía nuclear, no se han hecho grandes esfuerzos para liberar a la humanidad del peligro de las armas nucleares, transformándose de esta forma en un medio de destrucción masiva.
    En el caso de Venezuela la implementación de este tipo de energía no esta muy difundido, ya que solo entes pertenecientes al gobierno nacional, tales como el IVIC, son los que han manejado el uso de la energía nuclear y su implementación en las áreas de agricultura, medicina e industria, siendo el IVIC la única organización de investigación científica en Venezuela que posee un reactor nuclear.
    A diferencia de otros países de Latinoamérica tales como Brasil, Argentina y Chile, donde se han implementado plantas nucleares para producción de energía eléctrica, en Venezuela no se han hecho grandes esfuerzos para llevar a cabo proyectos de esta magnitud.
  2. CONCLUSIONES Electrón Partícula elemental con carga eléctrica negativa y que forma parte de la constitución atómica. Su masa es de aproximadamente 8,54 x 10-31 kg, y su carga es de 1,6 x 10-19 Coulomb.
    Fotón Es una partícula elemental que representa una cantidad discreta de energía electromagnética. El fotón tiene masa en reposo y no tiene carga eléctrica. Hoy día se acepta el hecho de que la luz se compone de fotones que viajan a una velocidad aproximada de 300.000 km/s.
    Mega Electrón Volt (Mev) Es una unidad de energía. Se lee como "mega - electrón - volt". 1 MeV equivale a 1.000.000 de eV (electrón - volt). 1 eV es igual a 1,6 X 10-19 Joule. Un eV es la energía que experimenta un electrón cuando se encuentra en un campo eléctrico, cuya diferencia de potencial es de 1 volt.
    Neutrón Partícula elemental que no posee carga eléctrica y que forma parte de los núcleos atómicos. Cuando se desintegra, como producto de un proceso físico, emite un neutrino (partícula neutra de masa en reposo igual a 0). La masa del neutrón es de aproximadamente 1,64 x 10-27 kg.
    Núcleo Atómico El núcleo atómico es parte fundamental de la constitución del átomo. Se encuentra formado fundamentalmente por protones y neutrones, los cuales se mantienen unidos por las llamadas fuerzas nucleares. Su masa representa a casi la totalidad de la masa atómica.
    Partículas Elementales Son partículas elementales aquellas que forman parte de la estructura de los átomos, y por lo tanto representan el último constituyente de la materia.
      Plasma Físico El plasma físico es una mezcla de partículas cargadas eléctricamente. Cuando se encuentra en equilibrio, la carga negativa total del sistema es igual a la carga positiva total. Bajo estas condiciones el plasma es un medio eléctricamente neutro que conduce a la perfección la corriente eléctrica. Sin embargo, en desequilibrio surgen en el plasma campos eléctricos de gran magnitud.
    Con frecuencia se reconocen dos tipos de plasmas físicos: el plasma débil y el fuertemente ionizado. El plasma débil contiene fundamentalmente electrones e iones positivos. El plasma fuertemente ionizado contiene además átomos y moléculas excitados y neutros. Si los electrones, iones, átomos y moléculas del plasma presentan diversas temperaturas se habla de la existencia de un plasma no isotérmico. Si estos componentes tienen igual temperatura se habla de un plasma isotérmico.
    Protón Partícula elemental de carga eléctrica positiva que forma parte de la estructura básica del núcleo atómico. Su masa es de 1,672 x 10-27 kg.
    Reacción Nuclear En Cadena Es una sucesión de fisiones nucleares que ocurren en forma casi simultánea. Supongamos que en una fisión nuclear se liberan 2 neutrones. Estos neutrones que se han liberado pueden fisionar 2 nuevos núcleos atómicos, de donde se liberan 4 nuevos neutrones, los que a su vez harán impacto sobre 4 núcleos atómicos, y así sucesivamente.

    Relación Masa - Energía Albert Einstein, por medio de su famosa relación E= mc2, indica que la energía y la masa son equivalentes, es decir, son una misma cosa, pero se encuentran en distinto estado. Por lo tanto, dada ciertas condiciones físicas, un cuerpo puede transformar su masa en energía.
    Uranio Mineral que se encuentra en la naturaleza bajo 150 formas diferentes. Es así como se puede presentar en forma primaria (como Uranita), en forma oxidada, o en forma refractaria. También se le puede encontrar como subproducto en la fabricación de fosfatos, en las minas de Cobre o en el agua de mar.
    Las mayores reservas de Uranio se encuentran en Africa, específicamente en Namibia, Níger, Gabón y Sudáfrica. En Sudamérica destacan las reservas de Argentina y Brasil. La composición del Uranio natural es de aproximadamente 99,3% en el isótopo del Uranio 238, y de un 0,7% en Uranio 235.

Nombre: Luiggi D. Escalante Sarmiento
CI. 18.878.611
Materia: EES