domingo, 21 de marzo de 2010

METALES

Metal de transición

Los metales de transición o elementos de transición son aquellos elementos químicos que están situados en la parte central del sistema periódico, en el bloque d, cuya principal característica es la inclusión en su configuración electrónica del orbital d, parcialmente lleno de electrones. Esta definición se puede ampliar considerando como elementos de transición a aquellos que poseen electrones alojados en el orbital d, esto incluiría a zinc, cadmio, y mercurio. La IUPAC define un metal de transición como "un elemento cuyo átomo tiene una subcapa d incompleta o que puede dar lugar a cationes con una subcapa d incompleta".[1] Según esta definición el zinc, cadmio, y mercurio están excluidos de los metales de transición, ya que tienen una configuración d10. Solo se forman unas pocas especies transitorias de estos elementos que dan lugar a iones con una subcapa d parcialmente completa. Por ejemplo mercurio (I) solo se encuentra como Hg22+, el cual no forma un ion aislado con una subcapa parcialmente llena, por lo que los tres elementos son inconsistentes con la definición anterior.[2] Estos forman iones con estado de oxidación 2+, pero conservan la configuración 4d10. El elemento 112 podría también ser excluido aunque sus propiedades de oxidación no son observadas debido a su naturaleza radioactiva. Esta definición corresponde a los grupos 3 a 11 de la tabla periódica.
Según la definición más amplia los metales de transición son los cuarenta elementos químicos, del 21 al 30, del 39 al 48, del 71 al 80 y del 103 al 112. El nombre de "transición" proviene de una característica que presentan estos elementos de poder ser estables por si mismos sin necesidad de una reacción con otro elemento. Cuando a su última capa de valencia le faltan electrones para estar completa, los extrae de capas internas. Con eso es estable, pero le faltarían electrones en la capa donde los extrajo, así que los completa con otros electrones propios de otra capa. Y así sucesivamente; este fenómeno se le llama "Transición electrónica". Esto también tiene que ver con que estos elementos sean tan estables y difíciles de hacer reaccionar con otros. La definición más amplia es la que tradicionalmente se ha utilizado. Sin embargo muchas propiedades interesantes de los elementos de transición como grupo son el resultado de su subcapa d parcialmente completa. Las tendencias periódicas del bloque d son menos predominantes que en el resto de la tabla periódica. A través de esta la valencia no cambia porque los electrones adicionados al átomo van a capas internas


Elementos
Grupo 3 (III B) 4 (IV B) 5 (V B) 6 (VI B) 7 (VII B) 8 (VIII B) 9 (VIII B) 10 (VIII B) 11 (I B) 12 (II B)
Periodo 4 Sc 21 Ti 22 V 23 Cr 24 Mn 25 Fe 26 Co 27 Ni 28 Cu 29 Zn 30
Periodo 5 Y 39 Zr 40 Nb 41 Mo 42 Tc 43 Ru 44 Rh 45 Pd 46 Ag 47 Cd 48
Periodo 6 Lu 71 Hf 72 Ta 73 W 74 Re 75 Os 76 Ir 77 Pt 78 Au 79 Hg 80
Periodo 7 Lr 103 Rf 104 Db 105 Sg 106 Bh 107 Hs 108 Mt 109 Ds 110 Rg 111 Cn 112

Propiedades


Casi todos son metales típicos, de elevada dureza, con puntos de fusión y ebullición altos, buenos conductores tanto del calor como de la electricidad. Muchas de las propiedades de los metales de transición se deben a la capacidad de los electrones del orbital d de localizarse dentro de la red metálica. En metales, cuanto más electrones compartan un núcleo, más fuerte es el metal. Poseen una gran versatilidad de estados de oxidación, pudiendo alcanzar una carga positiva tan alta como la de su grupo, e incluso en ocasiones negativa (Como en algunos complejos de coordinación).
  • Sus combinaciones son fuertemente coloreadas y paramagnéticas
  • Sus potenciales normales suelen ser menos negativos que los de los metales representativos, estando entre ellos los llamados metales nobles.
  • Pueden formar aleaciones entre ellos.
  • Son en general buenos catalizadores.
  • Son sólidos a temperatura ambiente (excepto el mercurio)
  • Forman complejos iónicos.

Estados de oxidación variables


A diferencia de los metales de los grupos 1 y 2, los iones de los elementos de transición pueden tener múltiples estados de oxidación estables ya que pueden perder electrones d sin un gran sacrificio energético. El manganeso, por ejemplo tiene dos electrones 4s y cinco 3d que pueden ser eliminados. La pérdida de todos estos electrones lleva a un estado de oxidación +7. El osmio y el rutenio se encuentran comúnmente solos en un estado de oxidación +8 muy estable el cual es uno de los más elevados para compuestos aislados.

La tabla muestra algunos de los estados de oxidación encontrados en compuestos de metales de transición.
Un círculo lleno representa el estado de oxidación común, un anillo de centro blanco representa uno menos común (menos favorable energéticamente).
Ciertos patrones en los estados de oxidación surgen a través de los periodos de los elementos de transición:
  • El número de estados de oxidación aumenta para cada ion hasta el Mn, a partir del cual comienza a disminuir. Los últimos metales de transición tienen una mayor atracción entre protones y electrones (ya que hay más de cada uno presentes), lo que requeriría más energía para eliminar los electrones.
  • Cuando los elementos están en estados de oxidación bajos, se pueden encontrar como iones simples. Sin embargo, los metales de transición en estados de oxidación elevados se encuentran generalmente unidos covalentemente a elementos electronegativos como oxígeno o flúor formando iones poliatómicos como el cromato, vanadato, o permanganato.
Otras propiedades con respecto a la estabilidad de los estados de oxidación:
  • Iones en elevados estados de oxidación tienden a ser buenos agentes oxidantes, mientras que elementos en bajos estados de oxidación tienden a ser buenos agentes reductores.
  • Iones 2+ a través del periodo comienzan como fuertes reductores y se vuelven más estables.
  • Iones 3+ comienzan estables y se vuelven más oxidantes a través del periodo.



Estos elementos tienen incompletas las subcapas d o con gran facilidad dan origen a iones que tienen incompletas estas subcapa (Los metales del grupo 2B Zn, Cd, y Hg no tienen esta configuración electrónica y aunque algunas veces se clasifican como metales de transición, en realidad no pertenecen a esta categoría) Este atributo le confiere diversas propiedades sobresalientes, como su coloración particular, la capacidad de formar compuestos paramagnéticos, poseer una actividad catalítica y en especial, una gran tendencia a formar iones complejos (contiene un cation metálico central unido o una o mas moléculas de iones), pueden modificar su spin sin variar su estado de oxidación y nunca estan libres en los organismos biológicos (ligados a proteínas, metaloproteinas, metaloenzimas)


Su actividad catalizadorase debe a la capacidad de formar complejos intermedios, transitorios, utilizando los orbitales "d" (prestando su energia) esto provoca un aumento de las velocidades de reacción conformando metaloenzimas como Anhidrasa Carbonica (Zn), Arginasa (Mn), Citrocromo oxidasa (Cu)

Actividad de quelación
La quelatación es la habilidad de un compuesto químico para formar una estructura en anillo con un ion metálico resultando en un compuesto con propiedades químicas diferentes a las del metal original. (El quelante impide que el metal siga sus reacciones químicas normales).
El nombre Quelato (en ingles "Chelate") se deriva de la palabra griega "Chela", que significa Pinza, porque el anillo que se forma entre el quelante y el metal es similar en apariencia a los brazos de un cangrejo con el metal en sus pinzas.



Quelantes y Ligandos

Los iones metálicos existen en solución en una forma altamente hidratada; esto es rodeados por moléculas de agua. Por ejemplo los iones de Cobre (+2) están hidratados con cuatro moléculas de agua otros metales pueden tener mas o menos moléculas de agua rodeándolosAl reemplazo de estas moléculas de agua por una molécula de un agente quelante formando una estructura compleja en anillo se le llama quelatación. A la molécula que reemplaza el agua se la llama "Ligando".
Se puede formar solo un anillo o se pueden formar varios anillos dependiendo del número de coordinación del metal. El número de coordinación corresponde al número de sitiosdelligando que pueden formar uniones de coordinación. Un ligando con 2 sitios se llama bidentado, un ligando con 3 sitios se llama tridentado y asi sucesivamente. Ejemplos de ligandos son: el ácido Cítrico, el ácido Málico, el ácido Tartárico, el ácido Glucónico, el ácido Láctico, el ácido Acético, el ácido Nitrilo-Tri-Acético (NTA), el ácido Etilen-Diamino-Tetra-Acetico (EDTA) y el acido Tri ppli fosforito (TPPA)

Propiedades físicas

La mayoria de los elementos de transición poseen una estructura de empaquetamineto compacto en la que cada atomo tiene un numero de coordinación de12 Ademas estos elementos tiene un radio atómico relativamente pequeño Por la combinación de estas propiedades, estos elementos forman enlaces metalicos fuertes, lo que les permite tener densidades, puntos de fusion y ebullición, calores de fusión y vaporización mayores que los metales pertenecientes a los grupos 1A, 2A y 2B.

Estados de Oxidación
Los metales de transición presentan diversos estados de oxidación en sus compuestos en la figura se muestra los estados de oxidación de la primera serie desde el escandio al cobre siendo los estados de oxidación comunes para cada elemento pueden ser +2,+3 o ambos El primero (+2) tiende a ser más estable al final de la serie, mientras que el segundo (+3) es mas estable al principio
El estado de oxidación máximo para un metal de transición es +7 que es el caso del manganeso (4s23d5). Para los elementos que están a su derecha (Fe a Co), los número de oxidación son menores. Los metales de transición casi siempre presentansus máximos estados de oxidación en los compuestos con elementos muy electronegativos, como el oxigeno y el fluor, por ejemplo V2O5, CrO3, y Mn2O7

Agustin Egui
EES


Compartir tus mejores FOTOS es fácil en Messenger ¡DESCUBRE cómo!

No hay comentarios:

Publicar un comentario