martes, 16 de febrero de 2010

La Energía Solar: Significado y Aplicaciones

LA ENERGÍA SOLAR
CUESTIONES TÉCNICAS

La crisis del petróleo del principio de los 70, hizo que la energía solar saltara a competir con las otras fuentes de energía convencional. Se hicieron grandes inversiones en centrales de experimentación, en España, concretamente en Almería, se construyó la Plataforma Solar de Tabernas, demostrando que ciertamente es viable obtener energía del Sol, pero también su momentánea incapacidad para competir en precio. Ahora, en la actualidad, la opción fotovoltaica para lugares remotos está relevando a los sistemas convencionales y para los lugares con acceso a la red de distribución eléctrica estamos en las puertas. El que esto se realice es cuestión de convicción y de una correcta información.

El sistema de aprovechamiento de la energía del Sol para producir energía eléctrica se denomina conversión fotovoltaica.

Las células solares están fabricadas de unos materiales con unas propiedades específicas, denominados semiconductores.

Para entender el funcionamiento de una célula solar, debemos de entender las propiedades de estos semiconductores.
Propiedades de los semiconductores.

Los electrones que se encuentran orbitando al rededor del núcleo atómico no pueden tener cualquier energía, solamente unos valores determinados, que son denominados, niveles energéticos, a los que se pone nombre: 1s, 2s, 2p, 3s, 3p.

Las propiedades químicas de los elementos están determinadas por el número de electrones en su última capa y por electrones que faltan para completarla. En el silicio, material que se usa para la construcción de una célula solar, en su última capa, posee cuatro electrones y faltan otros cuatro para completarla.

Cuando los átomos de silicio se unen a otros, comparten los electrones de las últimas capas con la de los átomos vecinos, formando lo que se denomina enlace covalente. Estas agrupaciones dan lugar a un sólido de estructura cristalina.

De la forma, que los electrones de un átomo no pueden tener cualquier energía, los electrones de un cristal tampoco pueden tomar cualquier energía.

Teniendo en cuenta que en el átomo sus propiedades se determinan en la última capa, ahora son agrupaciones de capas, llamadas bandas de energía, y que definen las propiedades electrónicas de un cristal.

Las dos últimas capas ocupadas por electrones reciben el nombre de banda de conducción y banda de valencia. Estas están separadas por una energía denominada gap.

Para poder entender esto describiremos los tipos de materiales existentes, eléctricamente hablando:
·         Conductores, disponen de unos electrones de valencia poco ligados al núcleo y que pueden moverse con facilidad dentro de la red cristalina respondiendo a un estímulo externo.
·         Semiconductores, sus electrones de valencia están más ligados a sus núcleos que los conductores, pero basta suministrar una pequeña cantidad de energía para que se comporten igual que estos.
·         Aislantes, los electrones de valencia están fuertemente ligados al núcleo y la energía a suministrar para poder desprenderse del átomo sería excesivamente grande.
Llegando a este punto, podemos decir que a cierta temperatura, algunos electrones tendrán energía suficiente para desligarse de los átomos, a estos electrones libres se les denomina "electrones" y se les asocia con los niveles energéticos de la banda de conducción.

A los enlaces que han dejado vacíos se les denomina "huecos"; para entender mejor este racionamiento diremos que los "huecos" se comportan de la misma forma que partículas con carga positiva.

Si pusiéramos un cristal de estas características, lo único que conseguiríamos sería calentar el cristal, ya que los electrones se moverían dentro del propio cristal, se generarían pares electron-hueco, que constan de un electrón que se mueve y deja un hueco, a ese hueco irá otro electrón próximo, generando otro hueco y así sucesivamente.

Para generar una corriente eléctrica hace falta un campo magnético, que se consigue con la unión de dos cristales semiconductores, uno de tipo "p" y otro de tipo "n".

Estos semiconductores se obtienen con un cristal semiconductor muy puro, introduciéndoles impurezas (dopado).

Una de las regiones se dopa con fósforo, que tiene cinco electrones de valencia, uno más que el silicio, de forma que esta región dopada muestra una afinidad por los electrones mayor que el silicio puro. A esta región se le denomina de tipo n.

La otra región de dopa con boro, que tiene tres electrones de valencia, uno menos que el silicio, de forma que esta región muestra una afinidad por los electrones inferior que el silicio puro. A esta región se le denomina de tipo p.

De esta forma, teniendo un cristal semiconductor de silicio formado por una región de tipo p y otra región de tipo n, se consigue una diferencia de potencial que hace que los electrones tengan menos energía en la zona n que en la zona p. Por esta razón los electrones son enviados a la zona n y los huecos a la zona p.

Cuando inciden fotones sobre este tipo de semiconductor, unión p-n, es cuando entonces se rompen algunos enlaces, generándose de esta forma pares electrón-hueco.

Las células solares, para poder suministrar energía al exterior, van provistas de unos dedos o mallas de metalización frontal, que consisten en partes metálicas por la que circula al exterior la corriente eléctrica generada.

Si esta generación se produce a una distancia de la unión menor que lo que se denomina longitud de difusión, estos pares serán separados por el fuerte campo eléctrico que existe en la unión, moviéndose el electrón hacia la zona n y el hueco hacia la zona p. De esta forma se da una corriente de la zona n a la zona p.

Si estos electrones consiguen ser recolectados por la malla de metalización, obtendremos energía eléctrica

Si la longitud de difusión es muy corta, el par electrón-hueco, se recombinará, lo cuál dará origen a calor.

Por supuesto esto siempre que la célula esté iluminada.

De todas formas no todos los fotones incidentes generan electricidad, hay factores que hacen que existan pérdidas en esta generación.
·         Energía de fotones incidentes, hay veces que los fotones incidentes no disponen de la energía necesaria para romper un enlace covalente y crear un par electrón-hueco, y otras, el fotón tiene demasiada energía, lo cual se disipa en forma de calor.
·         Recombinación, es el hecho de que los electrones liberados ocupen un hueco próximo a ellos.
·         Reflexión, parte de la radiación incidente en la célula es reflejada.
·         Malla de metalización, estos contactos eléctricos en el exterior de la célula, disminuye la superficie de captación.
·         Resistencia serie, es el efecto Joule producido por el paso de electrones a través del silicio, la malla de metalización y resistencia de los contactos de conexión eléctricas al circuito exterior.
·         Resistencia paralelo, tiene origen en las imperfecciones de la unión p-n, creando fugas de corriente.
Estas células conexionadas entre sí, y montadas en un módulo o panel es lo que llamamos panel solar. Cuyas características electricas vienen determinadas por el numero y forma de conexión de las células.

Conexión serie, conexionadas de forma que el lado p sea conectado con el lado n de otra célula, así sucesivamente, quedando cada extremo con un lado n y otro p.

Las tensiones generadas de cada célula se suman, la corriente es el valor de una célula.

Conexión paralelo, conexionados todos los lados de tipo p, por un lado, y los de tipo n por otro.
La tensión generada es la de una célula y la corriente es la suma de todas.

Conexión mixta, es la conexión en serie y en paralelo de las células.

Donde la tensión generada es la suma de las tensiones de células en serie y la corriente es la suma de todas las células en paralelo.

Itotal = I x número de celulas en paralelo
Vtotal = V x número de células en serie
Existen varios tipos de paneles fotovoltaicos, que se diferencian bien por su tecnología de fabricación de células o por su aplicación.
·         Silicio monocristalino
·         Silicio policristalino
·         Silicio amorfo
·         Policristalinos de lámina delgada
·         Paneles para el espacio
·         Sulfuro de cadmio y sulfuro de cobre
·         Teluro de cadmio
·         Seleniuro de cobre e indio
·         Arseniuro de galio o de concentración
·         Bifaciales


Nombre: Luiggi D. Escalante Sarmiento
CI. 18.878.611
Materia: EES
Fuente: La Energía Solar: Significado y Aplicaciones http://centros3.pntic.mec.es/cp.cisneros/solar09.htm



No hay comentarios:

Publicar un comentario