lunes, 15 de febrero de 2010

Semiconductores

La magnitud de la banda prohibida es pequeña ( 1 eV ), de forma que a bajas temperaturas son aislantes, pero conforme aumenta la temperatura algunos electrones van alcanzando niveles de energía dentro de la banda de conducción, aumentando la conductividad. Otra forma de aumentar la conductividad es añadiendo impurezas que habiliten niveles de energía dentro de la banda prohibida.
El germanio y el silicio son semiconductores.

Aceptadores Y Donadores
Se denomina semiconductor puro aquél en que los átomos que lo constituyen son todos del mismo tipo (por ejemplo de germanio), es decir no tiene ninguna
clase de impureza.
Si a un semiconductor puro como el silicio o el germanio, se le añade una pequeña cantidad de átomos distintos (por ejemplo arsénico, fósforo, etc). Se transforma en un semiconductor impuro.
A las impurezas se las clasifica en donadoras y aceptadoras.
Si a la estructura del semiconductor de silicio se le añade alguna impureza, como puede ser el arsénico (As), que tiene cinco electrones externos ligados al núcleo con carga positiva +5, se obtiene la forma que se muestra en la figura.
Ahora, bien para aumentar la conducción de cualquier semiconductor se recurre a un
proceso denominado "dopado" o "envenenamiento". El objeto del mencionado proceso es el del aumentar la cantidad de portadores libres en el cristal provocando un aumento en la conductividad del mismo (recordar que la corriente es el flujo de portadores)
El dopado del cristal es realizado con átomos trivalentes (con tres electrones en su última órbita) o pentavalentes (con cinco). Esta elección no es resultado de un proceso azaroso sino que uno u otro tipo de átomo aumentará a su vez la presencia de uno u otro tipo de portador. ¿Cómo es esto?: el silicio, como ya se ha dicho, tiene cuatro electrones en su última órbita que se combinan a su vez con otros átomos para formar un cristal. Al introducir un átomo penta o trivalente en dicho cristal, se provocará un aumento o un defecto de electrones que hará aumentar la cantidad portadores.
Si se introduce un átomo pentavalente (P, Sb, As) en un cristal puro, cuatro de sus electrones se unirán a cuatro electrones de los átomos de silicio vecinos, pero el quinto queda libre, sin formar parte de ninguna unión, por lo que está débilmente ligado al átomo:   Este electrón libre, requerirá muy poca energía para "saltar" a la banda de conducción. La energía térmica del ambiente basta para provocar este salto. De esta forma al agregar átomos pentavalentes agregamos electrones en la banda de conducción, es decir, agregamos portadores.
Cabe mencionar que los mencionados átomos pentavalentes se ubican en un nivel de energía mucho más cercano a la banda de conducción que la banda de valencia, denominado "nivel donador" este nivel se ubica a una distancia, energéticamente hablando, de 0,05 electron-volt, mientras que la distancia entre las bandas de un semiconductor es de 0,7 eV.
De la misma forma, podemos dopar al cristal con átomos trivalentes (como el boro, el Alumnio, el Galio, etc), esto provocará un exceso de electrones en el cristal, ya tres de los cuatro electrones de la última órbita del Silicio se combinan con los tres electrones del anterior átomo. Esto trae como consecuencia la generación de un espacio sin electrones, que tendrá carga positiva, es decir, esto generará un hueco.
De esta forma podemos controlar de manera casi definida, a través del dopado, la cantidad de electrones o huecos que existen en un cristal. A este tipo de cristal se le denomina extrínseco, ya que fue modificado por elementos exteriores
Semiconductores Tipo P Y Tipo N
Cuatro de los cinco electrones del átomo de arsénico se unirán a los correspondientes electrones de los cuatro átomos de silicio vecinos, y el quinto quedará inicialmente libre, sin una posible unión, y por tanto se convertirá en un portador de corriente. A este tipo de impurezas que entregan electrones portadores (negativos) se los denomina donadores o del tipo «n».
En un semiconductor con impurezas del tipo n, no sólo aumenta el número de electrones sino que también la cantidad de huecos disminuye por debajo del que tenía el semiconductor puro.
La causa de esta disminución se debe a que una parte de los electrones libres llena algunos de los huecos existentes.
Si al semiconductor puro de silicio se le añade algún tipo de impureza que tenga tres electrones externos, solo podrá formar tres uniones completas con los átomos de silicio, y la unión incompleta dará lugar a un hueco.
Este tipo de impurezas proporcionan entonces portadores positivos, ya que crean huecos que pueden aceptar electrones; por consiguiente son conocidos con el nombre de aceptores, o impurezas del tipo «p». Al contrario de lo que sucedía antes en el tipo n en un semiconductor con impurezas de tipo p los portadores que disminuyen son los electrones en comparación, con los que tenía el semiconductor puro.
A los semiconductores que contengan ya sea impurezas donadoras o aceptad se les llama respectivamente de tipo n o p. En un semiconductor del tipo n, los electrones se denominan portadores mayoritarios y los huecos portadores minontarios.
En un material de tipo p, los huecos son portadores mayoritarios, y los electrones portadores minoritarios.
Veamos ahora, qué ocurre si a un cristal extrínseco le conectamos una fuente externa de tensión. Al existir mayor cantidad de portadores (no importa de qué tipo), circulará por el cristal una corriente mucho mayor que en el no dopado. El
valor de esta corriente dependerá de que tan contaminado esté el material.
Si el cristal es de tipo 'n' la corriente se deberá casi en su totalidad a los electrones en la banda de conducción, aunque siempre existe una pequeña corriente producida por los huecos generados térmicamente. Análogamente, si el cristal es del tipo 'p' la corriente estará regida por huecos mayormente, existiendo, sin embargo, una pequeña corriente de electrones.
Polarización Directa E Inversa De La Unión P-N
El diodo de unión P-N es el dispositivo semiconductor más elemental. Consiste en el dopado de una barra de cristal semiconductor en una parte con impurezas donadoras (tipo N) y en la otra con impurezas aceptadoras (tipo P)De esta forma, en la parte P existe mucha mayor concentración de huecos que de electrones libres y en la parte N ocurre lo contrario.
La conductividad del diodo es diferente según sea el sentido en que se aplique un campo eléctrico externo. Existen dos posibilidades de aplicación de este campo: polarización inversa y polarización directa.
Polarización inversa. Consiste en aplicar a la parte N del diodo una tensión más positiva que a la parte P. De esta forma, el campo eléctrico estará dirigido de la parte N a la parte P y los huecos tenderán a circular en ese sentido
Mientras que los electrones tenderán a circular en sentido contrario. Esto significa que circularían huecos de la parte N (donde son muy minoritarios) a la parte P (donde son mayoritarios), por lo que esta corriente se ve contrarrestada por una corriente de difusión que tiende a llevar a los huecos de donde son mayoritarios (parte P) hacia donde son minoritarios (Parte N). Por consiguiente, la corriente global de huecos es prácticamente nula. Algo totalmente análogo ocurre con la corriente de electrones, la corriente de arrastre va en sentido contrario a la de difusión, contrarrestándose ambas y produciendo una corriente total Prácticamente nula.
La corriente total es la suma de la de huecos más la de electrones y se denominan Corriente inversa de saturación ( Is ). En la práctica, el valor de esta corriente es muy pequeño (del orden de nA en el Silicio) y depende de la temperatura de forma que aumenta al aumentar Ésta.

Polarización directa.
Consiste en aplicar a la parte P del diodo una tensión más positiva que a la parte N. De esta forma, el campo eléctrico estará dirigido de la parte P a la parte N. Esto significa que circularían huecos de la parte P (donde son mayoritarios) a la parte N (donde son minoritarios) por lo que esta corriente tiene el mismo sentido que la corriente de difusión. De esta forma, la corriente total de huecos es muy alta. Un proceso análogo ocurre para la corriente de electrones. La corriente total es la suma de la de huecos y la de electrones y toma un valor elevado a partir de un determinado valor de tensión (tensión umbral, V) que depende del tipo de semiconductor (en el Silicio es aproximadamente de 0,7 V y en el Germanio de 0,2 V).
Puede considerarse que el diodo es el dispositivo binario más elemental, ya que permite el paso de corriente en un sentido y lo rechaza en sentido contrario.


MATERIALES SEMICONDUCTORES

Los primeros semiconductores utilizados para fines técnicos fueron pequeños detectores diodos empleados a principios del siglo 20 en los primitivos radiorreceptores, que se conocían como "de galena". Ese nombre lo tomó el radiorreceptor de la pequeña piedra de galena o sulfuro de plomo (PbS) que hacía la función de diodo y que tenían instalado para sintonizar las emisoras de radio. La sintonización se obtenía moviendo una aguja que tenía dispuesta sobre la superficie de la piedra. Aunque con la galena era posible seleccionar y escuchar estaciones de radio con poca calidad auditiva, en realidad nadie conocía que misterio encerraba esa piedra para que pudiera captarlas.

En 1940 Russell Ohl, investigador de los Laboratorios Bell, descubrió que si a ciertos cristales se le añadía una pequeña cantidad de impurezas su conductividad eléctrica variaba cuando el material se exponía a una fuente de luz. Ese descubrimiento condujo al desarrollo de las celdas fotoeléctricas o solares. Posteriormente, en 1947 William Shockley, investigador también de los Laboratorios Bell, Walter Brattain y John Barden, desarrollaron el primer dispositivo semiconductor de germanio (Ge), al que denominaron "transistor" y que se convertiría en la base del desarrollo de la electrónica moderna.

Los "semiconductores" como el silicio (Si), el germanio (Ge) y el selenio (Se), por ejemplo, constituyen elementos que poseen características intermedias entre los cuerpos conductores y los aislantes, por lo que no se consideran ni una cosa, ni la otra. Sin embargo, bajo determinadas condiciones esos mismos elementos permiten la circulación de la corriente eléctrica en un sentido, pero no en el sentido contrario. Esa propiedad se utiliza para rectificar corriente alterna, detectar señales de radio, amplificar señales de corriente eléctrica, funcionar como interruptores o compuertas utilizadas en electrónica digital, etc.







Lugar que ocupan en la Tabla Periódica los trece elementos con. características de semiconductores, identificados con su correspondiente. número atómico y grupo al que  pertenecen. Los  que  aparecen  con  fondo.
gris corresponden a "metales", los de fondo verde a "metaloides" y los de. fondo azul a "no metales".
Esos elementos semiconductores que aparecen dispuestos en la Tabla Periódica constituyen la materia prima principal, en especial el silicio (Si), para fabricar diodos detectores y rectificadores de corriente, transistores, circuitos integrados y microprocesadores.

Los átomos de los elementos semiconductores pueden poseer dos, tres, cuatro o cinco electrones en su última órbita, de acuerdo con el elemento específico al que pertenecen. No obstante, los elementos más utilizados por la industria electrónica, como el silicio (Si) y el germanio (Ge), poseen solamente cuatro electrones en su última órbita. En este caso, el equilibrio eléctrico que proporciona la estructura molecular cristalina característica de esos átomos en estado puro no les permite ceder, ni captar electrones. Normalmente los átomos de los elementos semiconductores se unen formando enlaces covalentes y no permiten que la corriente eléctrica fluya a través de sus cuerpos cuando se les aplica una diferencia de potencial o corriente eléctrica. En esas condiciones, al no presentar conductividad eléctrica alguna, se comportan de forma similar a un material aislante.

TABLA DE ELEMENTOS SEMICONDUCTORES


Número Atómico Nombre del Elemento Grupo en la Tabla Periódica Categoría Electrones en la última órbita Números de valencia
48 Cd (Cadmio) IIa Metal 2 e- +2
5 B (Boro) IIIa Metaloide 3 e- +3
13 Al (Aluminio) Metal
31 Ga (Galio)
49 In (Indio)
14 Si (Silicio) IVa Metaloide 4 e- +4
32 Ge (Germanio)
15 P (Fósforo) Va No metal 5 e- +3, -3, +5
33 As (Arsénico) Metaloide
51 Sb (Antimonio)
16 S (Azufre) VIa No metal 6 e- +2, -2 +4, +6
34 Se (Selenio)
52 Te (Telurio) Metaloide
 

Incremento de la conductividad en un elemento semiconductor


La mayor o menor conductividad eléctrica que pueden presentar los materiales semiconductores depende en gran medida de su temperatura interna. En el caso de los metales, a medida que la temperatura aumenta, la resistencia al paso de la corriente también aumenta, disminuyendo la conductividad. Todo lo contrario ocurre con los elementos semiconductores, pues mientras su temperatura aumenta, la conductividad también aumenta.

En resumen, la conductividad de un elemento semiconductor se puede variar aplicando uno de los siguientes métodos:

  • Elevación de su temperatura
  • Introducción de impurezas (dopaje) dentro de su estructura cristalina
  • Incrementando la iluminación.
Con relación a este último punto, algunos tipos de semiconductores, como las resistencias dependientes de la luz (LDR – Light-dependant resistors), varían su conductividad de acuerdo con la cantidad de luz que reciben.



Resistencia dependiente de la luz (LDR), conocida también como fotorresistor o célula fotoeléctrica. Posee la característica de disminuir el valor de su resistencia interna cuando la intensidad de luz que incide sobre la superficie de la celda aumenta. Como material o elemento semiconductor utiliza el sulfuro de cadmio (CdS) y su principal aplicación es en el encendido y apagado automático del alumbrado público en las calles de las ciudades, cuando disminuye la luz solar.
En dependencia de cómo varíen los factores de los puntos más arriba expuestos, los materiales semiconductores se comportarán como conductores o como aislantes.



Como todos los demás, el átomo de silicio tiene tantas cargas positivas en el núcleo, como electrones en las órbitas que le rodean. (En el caso del silicio este número es de 14). El interés del semiconductor se centra en su capacidad de dar lugar a la aparición de una corriente, es decir, que haya un movimiento de electrones. Como es de todos conocido, un electrón se siente más ligado al núcleo cuanto mayor sea su cercanía entre ambos. Por tanto los electrones que tienen menor fuerza de atracción por parte del núcleo y pueden ser liberados de la misma, son los electrones que se encuentran en las órbitas exteriores. Estos electrónes pueden, según lo dicho anteriormente, quedar libres al inyectarles una pequeña energía. En estos recaerá nuestra atención y es así que en vez de utilizar el modelo completo del átomo de silicio (figura 1), utilizaremos la representación simplificada (figura 2) donde se resalta la zona de nuestro interés.
La zona sombreada de la figura 2 representa de una
manera simplificada a la zona sombreada de la figura 1
Como se puede apreciar en la figura, los electrones factibles de ser liberados de la fuerza de atracción del núcleo son cuatro.


Agustin Egui
EES

Elige un juego de Messenger. Reta a un amigo. ¡Pruébalo ya!

No hay comentarios:

Publicar un comentario